
Reyes algorithm typically generates successive texture lookups
that are adjacent in texture space, as they are generated from
adjacent grid points. Other rendering algorithms, particularly
ray tracing, are unlikely to generate such adjacent lookups,
resulting in much less effective caching of tiled data. Presumably,
this would significantly limit performance.

Currently, rendering with the system is significantly slower than
with substitute bitmaps. Although this is likely to always be the
case, it is believed that optimisations, particularly at the rasteris-
ing and filtering stages, could significantly increase performance.

Vector texturing is by no means a panacea. Textures of a photo-
graphic nature are simply not representable in a vector form.
Text and graphic shapes are among those most suitable for vec-
tor description, and these could be augmented with procedural
techniques in situations that demand greater photo-realism.

Conclusion
It has been shown that vector-based texturing can be successfully
implemented under RenderMan as an extension to the shading
language. The system described operates with viable perfor-
mance and over a significant range of resolution. This demon-
strates the potential value of vector textures in production.

Figure 1: The vector texture (left) provides significantly increased
resolution in comparison with the test bitmap texture (right).

208

Conference Abstracts and Applications
Sketches & Applications

Contact
John Haddon

NCCA
Bournemouth University

United Kingdom
theboyhaddon@hotmail.com

Ian Stephenson
NCCA

Bournemouth University
United Kingdom

Implementing Vector-Based 
Texturing In RenderMan

The predominant method of texturing for production is using
bitmap image files in conjunction with procedural shading.
However, the storage demands of bitmap images increase greatly
with resolution, and procedural techniques are typically unsuitable
for generation and fine control of complex figures.

Vector graphics provide resolution-independent, scaleable images,
typically with low file sizes, and are easily designed using available
software. This makes them ideal for use in some texturing situa-
tions, particularly where it is necessary to incorporate imagery in a
graphic style. This sketch presents the implementation of vector-
based texturing in a RenderMan renderer.

API
As implemented, vector graphics lookups appear to the shader
writer much as the built-in texture() calls do. A family of new
shadeops of the general form vtexture (uniform string filename,
float u, float v, string filtertype) return texture color and alpha
information. Beyond this, the shader writer requires no knowledge
of the system’s internals.

Implementation
vtexture() is implemented as two DSO shadeop calls. The first,
called once per grid with uniform parameters, ensures that the
required texture is loaded into a texture cache and marked as being
current. At this point, the texture is in its idealised, resolution-free
form.

A second shadeop call, executed once per micro-polygon, receives
areas to be filtered as arbitrary quads in texture space and returns
texture color and alpha information. This is achieved by generating
and maintaining a cache of tiles (rasterised sections of texture) and
filtering them appropriately. Tiles are rasterised at resolutions
adapted to the lookups requested, and a new tile typically includes
a reasonable area surrounding the current lookup area. This means
that there is a fair chance of a tile that is suitable for the following
lookups being already present in the cache. Rasterisation is a com-
putationally significant process, so the effectiveness of this caching
is essential to performance.

Example Usage
vtexture() was employed in rendering a sequence that shows a
track into a globe, starting at a point where the whole earth is 
visible and ending on a small high-resolution section, specifically
the Isle of Wight. For comparison, the same sequence was texured
using an 8,000 x 8,000-pixel bitmap. 

Both sequences were net-rendered with PRMan 3.9. The vector 
version required approximately three times the computing time of
the bitmap. The vector texture was approximately 800K in size,
whereas the bitmap was significantly larger (almost 250 MB of
uncompressed data). However, most significantly, the vector texture
provides resolution several orders of magnitude greater than that
achievable with a bitmap of this size (Figure 1).

Considerations
vtexture() has been implemented and tested with PRMan. The


