
Creatures
A FineGrainedParallelComputer

Architecture

David IanStephenson

D Phil Thesis

Universityof York

Departmentof Electronics

1995

2

Abstract

The Creaturesmodelof parallelprocessingoffers an alternative to conventionalCellular

AutomatabasedSIMD (SingleInstructionMultiple Data)systems.This thesisinvestigates

theCreaturesmodel,andshows it to have a placealongsidetraditionaldataparalleltech-

niques.Themodelshiftsfocusfrom thespacein whichsimulationstakeplace,to theactive

agentsexistingwithin thatspace.Thischangeof emphasisallowsmoreintuitivereasoning

aboutmodels,astheagentswill frequentlyhaveaveryphysicalsignificance.Thisphysical

style of programmingmakes the architecturesuitablefor useby thosewho are inexpe-

riencedin parallelcomputing,while retainingthe attractive SIMD featuresof scalability

andhomogeneity. The systemis bettersuitedto the modelingof dynamicsystemsthan

traditionalcellularsystemsandmaybemoreefficientwhendealingwith sparsedata.These

resultsmay be more generallyappliedto a broaderclassof agentbasedcomputational

models.

ThisthesisdefinestheCreaturesmodelbothinformallyandin amorerigorousmathematical

notation,andshows it to be computationallycomplete. The model’s implementationon

bothserialandparallelmachinesis demonstrated,leadingto thedevelopmentof a novel

topologywith attractiveloadbalancingproperties.A numberof simulationsareconsidered

whichdemonstratehow Creaturesmaybeappliedin anumberof fields.

Creatures

CONTENTS 3

Contents

1 Intr oduction 13

1.1 TheProblemsof ParallelProcessing 13

1.2 TheCreaturesSolution 16

1.3 Thesis 16

1.3.1 Chapter2 — TheCreaturesModel 17

1.3.2 Chapter3 — ImplementingtheCreaturesModel 17

1.3.3 Chapter4 — Applications 17

1.3.4 Chapter5 — Discussion 17

1.3.5 Chapter6 — Conclusion 17

2 The CreaturesModel 18

2.1 Background 18

2.1.1 CellularAutomata 18

2.1.2 DiscreteEventSimulation 20

2.1.3 Artificial Life Systems 22

2.1.4 Mirror 23

2.1.5 *Logo 25

2.2 DefiningCreatures 34

2.2.1 An InformalDescriptionof theCreaturesModel 34

2.2.2 A FormalDefinitionof theCreaturesModel 38

Creatures

CONTENTS 4

2.2.3 Equivalences 45

2.2.4 Complexity 48

2.3 Conclusions 49

3 Implementing the CreaturesModel 50

3.1 TheJAM Language 50

3.1.1 JamGrammar 52

3.2 A SequentialImplementation 55

3.2.1 A Naive Implementation 57

3.2.2 A ScalableImplementationStrategy 58

3.2.3 A StatisticalAnalysisof Bucketing 61

3.3 Creatureson theMasParMP1 64

3.3.1 A Naive Implementation 66

3.3.2 Bucketingon theMasPar 68

3.3.3 ConclusionsabouttheMasPar System 70

3.4 Creatureson theThinkingMachinesCM2 71

3.5 Spiralling— ReducingtheMovementProblem 72

3.5.1 DesigningA DoubleTwistedTorus 75

3.5.2 LoadBalancing 79

3.5.3 ConstructionandRouting 85

3.5.4 HigherDimensionalSpirals 88

3.5.5 A Proofof theNegativeOffsetEffect 92

3.6 A TransputerImplementation 93

3.6.1 Hardware 93

3.6.2 Software 96

3.6.3 Performance 99

Creatures

CONTENTS 5

3.7 Comparisonof PerformancebetweenImplementations 101

4 Applications 104

4.1 ClassicCA Problems 105

4.1.1 An IdealGas 105

4.1.2 A Modelof Digital Logic 106

4.1.3 TheFrenchFlagProblem 108

4.1.4 TheFiring SquadProblem 110

4.1.5 TheGameof Life 110

4.1.6 Langton’sAnt 112

4.2 MoreComplex Models 116

4.2.1 SimulatingRoadTraffic Flow 116

4.2.2 WaterCurrentAnalysis 118

4.2.3 A Model for theSpreadof Sexually TransmittedDisease 121

4.2.4 Taxisasa GoalOrientatedNavigationStrategy 123

4.3 Conclusionson theApplicationof Creatures 134

5 Discussion 135

5.1 Review 135

5.2 FurtherWork 137

5.2.1 SimulatorDevelopment 137

5.2.2 ExtendingtheModel 138

5.2.3 SimulationTechniques 139

5.2.4 Applications 139

6 Conclusions 141

6.1 GeneralAims 141

Creatures

CONTENTS 6

6.2 Creatures 141

Creatures

LIST OF FIGURES 7

List of Figures

2.1 EmergentInsectBehaviour 23

2.2 Ant foragingTurtleProcedures 27

2.3 Ant foragingPATCH Procedures 28

2.4 Ant foragingOBSERVER Procedures 29

2.5 FirePATCH Procedures 30

2.6 FireOBSERVER Procedures 31

2.7 RopeTURTLE Procedures 32

2.8 RopeOBSERVER Procedures 33

3.1 Compilinga Rulefor Multiple Platforms 51

3.2 TheNeXTStepFrontEnd 56

3.3 NeXT Performance 59

3.4 Probabilityof successfor 64and 64 65

3.5 Probabilityof successfor 64and 128 65

3.6 Probabilityof successfor 64and 256 65

3.7 BroadcastingtheCreatureMap 66

3.8 MasParMp-1 Performance 67

3.9 GeneratingtheCreatureMapusingbuckets 69

3.10 BucketedPerformance 70

3.11 CM2 Performance 72

3.12 CM2 StationaryPerformance 73

Creatures

LIST OF FIGURES 8

3.13 Wrappingbucketsinto aSpiral 74

3.14 Filling theGap 76

3.15 Thediameterof TwistedMeshes 78

3.16 Applying a RectangularLoadto aTraditionalGrid 80

3.17 Applying a rectangularload 81

3.18 Applying a RectangularLoadto aTwistedGrid 82

3.19 Loadsappliedto an8 grid 83

3.20 Loadsappliedto an8 8 5 5 grid 84

3.21 Two SimilarNetworks 85

3.22 Origin VectorsSpanningSpace 87

3.23 A ThreeDimensionalTwistedTorus 89

3.24 TheINMOS B042TransputerBoard 94

3.25 A SpiralEmbeddedwithin aB042Board 95

3.26 RoutingIn TheB042’sSpareColoumn 98

3.27 Performanceof theTransputerImplementaion 99

3.28 SpeedupusingtheB042 100

3.29 Performanceof theImplementations 102

4.1 An IdealGasSimulation 105

4.2 A Digital Logic Simulation 107

4.3 TheFrenchFlagProblem 109

4.4 TheFiring SquadProblem 111

4.5 TheGameof Life 113

4.6 LangtonsAnt 114

4.7 Langton’sAnt Code 115

4.8 RoadTraffic Flow 117

Creatures

LIST OF FIGURES 9

4.9 Currentson theriverOler 119

4.10 SimulationWaterCurrents 120

4.11 A Sexualbehaviour Model 122

4.12 DiffractionRoundanObstacle 124

4.13 TheMovementof Scentparticles 125

4.14 TheCheeseCreature 126

4.15 RatandRandomRat 127

4.16 PersistentRatandFranticRat 128

4.17 TheMaze 129

4.18 RatPerformance 131

5.1 Improving I/O Performance 138

Creatures

LIST OF TABLES 10

List of Tables

3.1 SomeViableMachinesizes 79

4.1 RatPerformance:Timestepstakento reachthecheese 130

4.2 StatisticalResults 131

Creatures

LIST OF TABLES 11

Acknowledgments

Thiswork is supportedby theDefenceResearchAgency, Malvern,Worcs,UK andtheUK

ScienceandEngineeringResearchCouncil.

Thanksto MasParComputerCorporationfor theuseof anMP-1104machineaspartof the

MasParChallengeprogramme.

Accessto theThinkingMachinesCM-2 usedduringthecourseof thisprojectwasprovided

by theEdinburghUniversityParallelComputingCenter.

Thanksto Andy Tyrrell for proof reading— a task that no one deserves, and for his

commentsduringthefinal stagesof this research.

Specialmentionshouldalsogo to RichardTaylor for hisuniquerole in thisproject.

Finally thanksto Paula,thecats(GemandBiscuit),andeveryonein theAdaptiveSystems

Labfor puttingupwith mefor thelastthreeyears.

Creatures

LIST OF TABLES 12

Declaration

I declarethat this thesishasbeenwritten by myselfandthework reportedwithin it is my

own with thefollowing exceptions:

1. The*Logo codefoundin section2.1.5is directly takenfrom the*Logo manual[54],

andis thecopyright of theoriginalauthor.

2. The original developmentof the river mouth simulationwas doneby Dominique

SnyersatLaboratoireI.A etSystemesCognitifs,ENSTdeBretagne,BP832,29285

BRESTCEDEX,France.

andany otherworksindictedin thetext.

Thework hasnothithertobeenpublishedwith theexceptionof:

1. Partsof Chapters2,3 and4 arebaseduponwork discussedin CreaturesandSpirals:

A dataparallel objectarchitecture, by I. StephensonandR. W. Taylor. Proceedings

of theEuromicroworkshoponParallelandDistributedProcessing1994,IEEEPress.

Creatures

Intr oduction 13

1

Intr oduction

The demandfor fastercomputersshows little signsof abating. However the traditional

methodsof improvingperformancearereachingtheirlimits. It is nolongerpossibleto sim-

ply increasecomponentdensities(thescalesof whichareapproachingatomicdimensions)

or to increaseclock rates(wherewavelengthsarebecomingcomparableto the physical

dimensionsof themachine).Designingandfabricatingsuchmachinesis increasinglydif-

ficult, andprohibitively expensive. Thoughhardwaremanufacturersmaybeableto offer

diminishing rewardsfor the immediatefuture it is unlikely that the rapid expansionof

computepowerpreviouslyavailableto usersatnegligible costcancontinueindefinitely.

Parallelcomputingsystems[31][19] offer aneffective,andvirtually unlimitedopportunity

to increaseperformanceat nearlinear cost. Regardlessof the performanceof a single

processor, two suchprocessorscould potentiallydo twice asmuchwork. In addition

processorswill cost timesasmuchasa singleprocessor. If is largeenoughit is likely

thatmany verycheapprocessorsmayoffer betterperformancethanasinglelargeprocessor

at lowercost.

Unfortunatelyperformingtaskswith many smallprocessorsis not assimpleasit maybe

with asingleprocessor. Despitethisthepromiseof betterperformancerequiresthatparallel

computingbeinvestigatedandtechniquesdevelopedtoovercomethelimitationsof existing

parallelsystems.

1.1 The Problemsof Parallel Processing

A largetaskmaybebrokendown into anumberof smallersub-tasks.If thisdecomposition

is donecorrectlyeachof thesub-tasksmaybeallocatedto oneprocessorandperformedin

parallel(perhapsoneprocessorreadsin data,anotherprocessesit, andanotheroutputsthe

Creatures

Intr oduction 14

results). Eachprocessorperformsa differenttask(or numberof tasks)on its own setof

data,andcallson theotherprocessorsto performotherpartsof theglobaltaskasthey are

required.Thisform of parallelcomputingknownasMIMD (Multiple Instruction,Multiple

Data)[18] canwork particularlywell in distributedcontrol systemswhereoneprocessor

canbemaderesponsiblefor partof thesystem,communicatingwith otherprocessorsonly

whennecessary. Eachprocessoris independentof all others,andcapableof performing

usefulwork in its own right[41][42].

UnfortunatelyMIMD computingfails to deliver the extremehigh performancerequired

for theoreticalandsimulationwork. MIMD requiresthata problembebrokendown into

small functionalunits, eachunit beingspecificto onevirtual processor. However most

problemsarelimited asto how far they canbebrokendown — the sizeof theunits into

whicha problemmaybesplit is known astheproblem’sgrainsize. Givena largenumber

of processorsit maynot bepossibleto breaka problemdown suchthatoneunit of useful

workcanbedoneoneachprocessor. Further, with currenttechnologythetaskof breakinga

problemdown requiresskilledhumanintervention.Partitioninga taskby handis practical

for perhapsup to tenprocessors.However it becomesmanuallyintractablewhentensof

thousandsof processorsare considered— MIMD techniquesare inherentlydifficult to

scale.

Evenwhenconsideringonly a smallnumberof processorsthe interactionsbetweencom-

ponentscanrapidlybecomeexceedinglycomplex. Eventrivially simplecodemayreacha

state(known asdeadlock)whereeachtaskis waiting for anothertaskto completebeforeit

maycompleteitself. Sucha systemwill never completeany task,andhencewait forever.

Suchstatesarelikely to occurunlessthesystemis verycarefullydesigned.Theallocation

of tasksto specificprocessorsis alsoanissuewhichmaydrasticallyinfluenceperformance,

againrequiringexpertintervention.Theentirestructureof thesoftwareis highlydependent

uponthehardwareandcommunicationsstructuresavailable.

Thealternativetopartitioningthetaskintosub-tasksis toallocateoneelementof computing

resourcesto eachdataelementin the problem,andperformidenticaloperationson each

one. This approach,known as Single InstructionMultiple Data (SIMD)[18] is not as

generallyapplicableastheMIMD approach.However it is particularlywell suitedto the

analysisof mathematicalproblemsandhighspeedsimulations[65] wherelargenumbersof

homogeneouslocal programsmaybeappliedto theproblemspace[29][21][45]. Consider

for examplethe problemof finite elementanalysiswhereidentical “physical laws” are

appliedrepeatedlyacross(say)anaircraftwing. Eachtaskdoeslittle usefulwork by itself,

but collectively thesystemmayproducemeaningfulresults.

Creatures

Intr oduction 15

SIMD systemsaretypifiedby CellularAutomata(CA)[66][69][63][23][17][14] wherethe

programsareknownasrules.Theapplicationof theseverysimplelocalrulesproducescom-

plex globalbehaviour, suitablefor usein many differentfields. Theadvantagesof cellular

architecturesover moreconventionalheterogeneousMIMD multi-processororganisation

schemesmaybesummarisedas:

simplelocal behaviour; all cell behaviour is definedin termsof local properties,re-

quiringminimalcommunications(it isalmostimpossibletodeadlockSIMD systems,

asall nodesin thesystemexecutethesamerule at thesametime,with no provision

for handshaking.Any form of deadlockwhich doesoccurwill beat a higherlevel,

preventingthe“program”progressing,thoughthebasic“rule” still executessuccess-

fully), andpermittingsimple,provenstructuresto be implementedon eachnodein

eitherhardwareor software.

complex globalproperties;thebehaviour of groupsof thesesimplenodeprocessors

may be forced to approximateto very much more complex global programming

schemes.

homogeneity;all nodesareidenticalbothin hardwareandsoftware,andhencelarge

systemsmaybebuilt andprogrammedwithoutreferenceto theirsize.Scalingof the

systemis throughnodeduplicationratherthana new, positiondependentsynthesis.

locality; communicationsarelocal in nature(asthey arein mostproblems),hence

theperformanceof thesystem(perprocessor)neednot degradeasthemachinesize

is increased.

Despitetheseadvantages,SIMD programmingis still a specialisedactivity. Becausethe

complexity arisesout of simplerulesin often unexpectedwaysit is generallydifficult to

understandwhy asystembehavesasit does,or to modify thebehaviour of a systemto suit

aparticularapplication.

It is proposedthatthemaindisadvantagesof conventionaldataparallelmodelsarea result

of themodels’staticnature,forcingproblemsto beexpressedin termsof spaceratherthan

theagentswithin thatspace— a roadtraffic flow problemwouldbeexpressedin termsof

roads,ratherthancars. The “location” of a cell is definedby its neighbors,andis fixed

for all time — it is thereforedifficult to expressmovementwithin themodel. This thesis

exploresthisareathroughanovelSIMD architectureknownas“Creatures”whichattempts

to addressthisby describingsystemsin termsof theiractiveelements.While still retaining

Creatures

Intr oduction 16

theattractivefeaturesof traditionalSIMD/Cellularparadigms,Creaturesallowsproblemsto

bedescribedin afashionwhichis farmoreintuitivethanmoretraditionalSIMD paradigms.

1.2 The CreaturesSolution

Thesystemis madeup a numberof creatureswhich exist in anotherwiseempty, infinite

space.Eachcreaturehasaclearlydefinedbehaviour. A creature’sbehaviour is governedby

its interactionwith othercreaturesthatit can“see”. As aresultof observingothercreatures,

acreaturemay:

changeits state;

“givebirth” to othercreatures;

moveto a new location(adjacentto its startingpoint)within thespace;

“die”.

Thisgeneralisedform of creatureprocessingdescribesmany complex systemsin a natural

andunderstandableway. In orderto modela systemit is only necessaryto describethe

behaviour of the individual componentsandprovide the initial conditions. Eachelement

performsthesamesequenceoperations,but its resultantbehaviour is differentiatedfrom its

peersby the observationsit makes. Thecomplexity of the resultingsystemis dependent

not on the complexity of the individual elements,but on the very large numbersof such

elements.In developingsuchmodels,thesystemallows theuserto experimentwith and

isolatethecharacteristicpropertiesthatdetermineits behaviour.

1.3 Thesis

The brief descriptionof Creaturesin the previous sectionoutlinesa novel approachto

tacklingtheproblemof parallelcomputing.In thefollowing chapterstheCreaturesmodel

will berefinedandimplemented.A numberof simulationsareusedto illustrateits features,

andcomparisonswill bemadewith otherSIMD models.

Creatures

Intr oduction 17

1.3.1 Chapter 2 — The CreaturesModel

A numberof modelsof SIMD computationandsimulationtechniquesareconsidered.Their

strengthsandweaknessesarediscussed.The Creaturesmodel is thenpresented:first in

an informal fashionthenin a moremathematicalstyle. Themodelis demonstratedto be

completeby the implementationof a Turing machine,anda simpleequivalenceto CA is

demonstrated.

1.3.2 Chapter 3 — Implementing the CreaturesModel

Thischapterconsiderstheimplementationof Creaturesonarangeof platforms.Thesystem

is first developedin a naive serialform, andtechniquesfor improving performanceof this

implementationarediscussed.Implementationon two commercialparallelmachinesis

considered,andtheprogrammingtechniquesarefurtherrefined.Finally thedevelopment

of asemi-custommachinebasedontransputersis discussed,andtheperformanceof all the

implementationscompared.

1.3.3 Chapter 4 — Applications

Having establisheda stableimplementationof the Creaturesmodel, the systemis tested

by the developmentof a numberof simulations. TheseareeitherclassicCA problems

or demonstrationsdrawn from fieldswheretheCreaturessolutionmaybeappropriate.In

particularthefinal example(TaxisasaGoalOrientatedNavigationStrategy) demonstrates

the completedevelopmentof a simulationfrom concept,throughimplementationto the

collectionandstatisticalanalysisof results.

1.3.4 Chapter 5 — Discussion

Thestrengthsandweaknessesof theCreaturesmodelareconsidered,taking into account

theexperiencegainedin implementingthemodelanddevelopingsimulationsusingit. A

numberof proposalsaremadeastohow themodelcouldbefurtherexploredanddeveloped.

1.3.5 Chapter 6 — Conclusion

Themajorresultsof thiswork, andtheconclusionsdrawn arereiterated.

Creatures

The CreaturesModel 18

2

The CreaturesModel

2.1 Background

A numberof systemsattemptto addressproblemssimilarto thosethattheCreaturesmodel

dealswith. By examiningthesesystemstheir strengthsanddeficienciesmaybeidentified,

enablingthe Creaturesmodelto provide a moreusefultool to developersof simulations.

In additionto Cellular Automatathe programmingparadigmsandsimulationtechniques

of DiscreteEventSimulation,Mirror modeling,and*Logo mustbeconsidered.Thefield

of artificial life alsotouchesupontheproblemsof massively parallelagentbasedsystems,

thoughoftenin aninformalfashion.Assuchit providesasetof problemswhichasuccessful

simulationtool shouldbeableto handlein anefficientmanner.

2.1.1 Cellular Automata

CellularAutomata(CA)[63][69][66][23][17] aremadeup of regular ‘surfaces’of locally

connectedcomputingunits or cells. Eachcell examinesthe stateof its neighborsand

synchronouslymodifiesits stateaccordingtoasimple,universalrule. Eachcell is identical,

bothin termsof its neighborhood(connectivity) andtheruleor programthatit is executing.

Thesystemisdefinedbyatriplet: S(tate),N(eighborhood),T(ransitionfunction) for each

cell. NormallyN andT will bethesamefor everycell in thesystem— shouldthis not be

thecasea moregeneralform of N, T andS maybederivedsuchthatN andT areuniform

throughoutthesystem,hencenon-uniformcasesneednotbeconsideredasinteresting.

CA have many attractive featuresfor theengineerandprogrammerattemptingto build a

highly parallelsystemanddescribeits behaviour. Attemptingto specifythehardwareand

softwareof every nodein a systembecomesincreasinglydifficult asthenumberof nodes

increases.If eachnoderequiresspecialattentionby the programmerthena limit on the

Creatures

The CreaturesModel 19

numberof processorsis quickly reached.The homogeneityof CA enablesany number

of processorsto be controlledwith a singlesetof instructions. This in turn leadsto the

propertyof scaleability:thenumberof processorsisnolongerspecifiedaspartof thedesign

of hardwareor software(at leastat the logical level), andhencethesizeof a machine,or

simulationmaybesimply increasedasrequired.

Thebehaviour of a CA typesystemis specifiedat a very primitive level comparedto the

typeof codetypically foundin traditionalsimulationsoftware. This simply definedlocal

behaviourmaybecloselytiedto thephysicalsystemsbeingmodeled.A systemisdescribed

by definingthesimplestpropertiesof theelementsof which it is composedandobserving

the consequencesof suchrules[65]. It is thereforeno longernecessaryto make global

assumptionsaboutthebehaviourof asystem.By establishingastructuralisomorphism[72]

betweena simulationanda (hopefully) equivalentsystemthe predictive strengthof the

simulationis greatlyincreased.Shouldtheglobalsimulationnot behave asexpectedthen

theerrorrelatesto thedescriptionof thebasicelements.Usingthistechniquetheproperties

of theelementsrelevantto thesystemsbehaviour maybeidentified.

Despitethesestrengths,attemptingto describemany physicalsystemsusingCA introduces

a numberof undesirablecomplicationsandoverheads.Theseareprimarily relatedto the

thespatialnatureof CA. Thecellsof aCA systemhavea(typically) smallsetof neighbours

whichis fixedfor all time. Suchlocality is well suitedto thedescriptionof pointsin space,

but is difficult to reconcilewith objectswithin thatspacewhichmaybemobile,andhence

haveaconstantlyvaryingsetof neighboursof unpredicatablesize.A CA basedsimulation

mustthereforebe formulatedin termsof the spaceit occupies. Unfortunatelyfor many

real problemsspacesimply providesa substratein which active elementsof the system

mayexist. As a resultthebasicelementswhich mustbedescribedaspartof theCA rule

arenot theelementsonewould naturallyuseto describethesystem.This is conceptually

difficult for thosenot experiencedin suchprogrammingtasks. For exampleconsiderthe

implementationof aroadtraffic simulation:aCA descriptionof suchasystemmustconsist

of cellswhich representroads.A roadmayholda caror not holda car, andatappropriate

timespassthecarto anadjacentsectionof road.While clearlysucha systemis workable,

thesolutionwill belessthanintuitiveandsomewhatconvoluted.

In practisethis problemis compoundedby CA beingessentiallysharedmemorysystems.

Communicationbetweenadjacentnodesis by settingflagsin a node’s state,in the hope

that an adjacentnodewill observe the flag andact appropriately. As a resultmuchpro-

grammingeffort goesinto providing handshakingbetweencellsto simulatethemovement

of interestingdataelements(thesebeingcarsin theaboveexample).It is necessaryfor the

Creatures

The CreaturesModel 20

programmerto introducesynchronizationmechanismstoensuredataintegrity (for example

to ensurethattwo adjacentnodesdonotbothbelievethecarhasmovedinto their location)

muchlike thosefoundin coursegrainedsystems(atomiclocks,semaphores,conversations

etc[9]). TechniquessuchastheMargolisneighborhood[63] havebeendevelopedto address

this problem,but at thecostof furtherremoving thephysicalsystemfrom the implemen-

tation. This complicationis often neglectedby novice programmersleadingto incorrect

simulations,and the increasedcomplexity introducedinto the systemby the additional

code(whichmayperhapsengulfcompletelytheoriginalphysicalmodel)is likely to induce

mistakesfrom all but themostexperiencedusers.

It mayappearto thenaiveobserverthatCA offergoodloadbalancing,aseachcell performs

identicaloperations,andhencerequiresthesamecomputetimeasall othercells. However

interestingeventstypically take placein only few areasof space,leaving many of the

processingelementsperforminguselessoperations.Thespatialhomogeneityof CA forces

work to bedoneevenwhentheoperationsareclearlyredundant.To referbackto theroad

traffic example: accidentswill only occurwhencarsmeet. If oneareaof the simulation

containsnocarsthenthereis nousefulwork to bedone.If acell containsonecarthenthere

is a little work to bedonein moving thecarto anadjacentlocation. Shoulda cell contain

many carsthenthereis muchwork to bedonedetectingcollisions,andprocessingeachof

thecars’ individualmovements.In a CA systemall nodeswould beforcedto performall

the collision detectionroutineseven thoughthe operationis pointlessfor (perhaps)most

cells. At an instructionlevel, the systemis balanced,but this is far from beingthe case

whena metricof “usefulwork” is used.

2.1.2 DiscreteEvent Simulation

DEVS[72] andNext EventSimulation[73] attemptto shift theemphasisof cellularsystems

towardsinterestingevents— thoseactionsandinteractionswhichdrivethebehaviourof the

systemratherthanthecontinuoussteadystatethatmany cellsof a CA typically mayfind

themselvesin. In particularDEVS modelsaresignificantlybetterthanCA for simulating

themovementandcollisionof particleswithin space.

Thedescriptionof aCA isextended,whereinsteadof beingdefinedby thestandard S(tate),

N(eighborhood),T(ransition) triplet, S includesa valuewhich is the time at which the

cell will next update(a furtherparameterSELECTactsasa tie breaker shouldtwo cells

wish to updatesimultaneously— thesystemoperatesin continuoustime,sotheoretically

no two eventsmay occursimultaneously).Cells only updatewhenthe time held in S is

Creatures

The CreaturesModel 21

reached,or they areupdatedby a neighbor. In addition,T (thetransitionfunction)canset

thevalueof cellsin theneighborhood;it transformsthestatesof thecellsin N. Thisgreatly

simplifiesmovement,asa “particle” mayalmostdirectlypropelitself acrossspace.

For exampleconsiderthe simplestcaseof a particle moving acrossspacefrom left to

right. Onecell at the far left may initially containa particle,andbescheduledto update

imminently,whileall othercellsareessentiallyidle,beingemptywith noupdatesscheduled.

Uponupdatinga cell canmarkthecell to its right ascontainingtheparticle,scheduleit to

beupdated,andthenreturnitself to the idle state.By sucha mechanismtheparticlewill

moveacrossspacewith a minimumof computationaleffort.

This is indeedmuchsimplerthananequivalentmodelimplementedin a CA stylesystem,

andtheintroductionof timeinto themodelmaybevaluablein relatingasimulationsresults

to therealworld. Becauseno two eventsof thesimulationoccurat thesametimemany of

thedifficultiesof maintainingdataintegrity areresolved.Theability of acell to changethe

stateof aneighbourratherthanjustobserveit allowscellsto “drive” dataacrossthespace.

However the encapsulationof datathat is presentin the CA modelhasbeenlost. The

ability to changedatain anothercell, thoughapracticalsimplificationfor theprogramming

of somesimulations,may limit the implementationon non-sharedmemoryhardware. A

moresignificantlimitation from a parallelprocessingpoint of view is themodel’s useof

coroutinesto ensuredataintegrity — no two eventsoccurat thesametime, so in a naive

implementationthereis noparallelism,thoughextensionsto themodel,andmorecomplex

dataflow analysisof thesystemmakeparallelDEVSpossible[3].

DEVSsimplifiestheprogrammingof agentbasedmodelsbysimplifyingthecommunication

betweenadjacentnodessodatacansecurelybepassedbetweenthem.Howevera discrete

eventsimulationis still fundamentallyspatiallybased:consideringthepreviousexample,

it is now easyto movecarsaround,but theroadsmustbeprogrammedto doit. Thoughthe

practicalitiesof building sucha systemaremuchsimplerthanwith CA theprogramming

muststill betwistedto fit theDEVSmodel.

“Space”in DEVSmodelsis frequentlyusedsimplyto representpartof thesystem,without

any referenceto physicalspace.A locationmayrepresent(for example)a garage,which

would hold a numberof carsrequiringrepair. Fromthis locationcarsmaybemovedto a

scraplocationor to a roadlocationdependingon theoperationthat thegaragechoosesto

performon them. Suchsystemsarefar from homogeneous,eachcell potentiallyhaving

its own uniquerulesandconnectivity. However suchsystemsaremerelya practicality,

andcouldbeimplementedasa morecomplex rule appliedequallyto all cells. Therefore

Creatures

The CreaturesModel 22

simulationsof this typearecomputationallyof little theoreticalinterest,andhave limited

relevanceto Creatures.

2.1.3 Artificial Life Systems

A large subsetof researchin the field of artificial life tries to modelsystemswherethe

collectivebehaviour of many individualelementsis morecomplex thanwouldbeapparent

from examiningasingleelement.CellularAutomataareoftenused,but systemsdeveloped

areoftenbasedon thecollectivebehaviour of mobileagentsanalogousto thatoftenfound

in insectcolonies[13][20][55][5] — CA (for reasonsdiscussedpreviously) are lessthan

ideal for this typeof simulation. The termswarmbehaviour is oftenusedin ALife work

to describesystemswherethecollectionof agentsdisplayscollective intelligencebeyond

thatfoundin any individual.

Systemsdevelopedby ALife researchersshow the power of large numbersof simple

elementscooperatingaccordingto very simplerulesto producecomplex behaviour. The

Creaturesmodelshouldbeableto simply describethe kindsof problemsencounteredin

developingsuchsimulations,allowing systemsto berapidly developedby specifyingthe

requiredlocalbehaviour without recourseto low level programming.UnfortunatelyALife

is focuseduponspecifictasks,andfew systemsmake distinctionbetweenthe simulation

beingrun,andthemodelbeingused— programsaretypically writtenin anadhocfashion

to describea particularphysicalsystemwithout referenceto simulationtechniquesthat

could(or should)beapplied. Theexceptionto this beingMirror (section2.1.4). Though

thepower of agentbasedsimulationmaybeobservedthroughALife work, little is being

learntaboutthesimulationtechniquesinvolved.

To illustratethe kind of problemsbeingtackledin ALife researchconsiderthe actionof

tunnelingconductedby antsduringnestbuilding. Antsmaydig with a certainprobability,

andupondoingso depositpheromone.This increasesthe likelihoodthat anant will dig

therein the future. As a resultthey dig branchingtunnels,ratherthanunstructuredholes.

In additionthey will dig morewheredigging is successful(sayas in softersoil), rather

thanwhereit is fruitless(up againstrock). Onemay expect that this positive feedback

mechanismwould result in an explosionof diggingactivity. However asthe nestsizeis

increased,asaresultof excavation,thedensityof pheromonedecreasesanddiggingactivity

is reduced,producinga correctlysizednestfor a givenpopulation.Sucha simulationhas

beenimplementedusingtheCreaturesmodel.

Creatures

The CreaturesModel 23

Food
Source

Ants
Nest

Most choose
this route

Few take
this route

Figure2.1: EmergentInsectBehaviour

A secondform of collectivebehaviour maybeobservedby consideringthesituationwhere

a pathwhich leadsto food branches(figure2.1). At first theantstake randompaths,but

asthey go they lay a trail behindthem. On the returnroutethereis morepheromoneon

theshortbranch,asmoreantswill havealreadypassedthatway, somoreantsgo thatway.

This in turn leadsto morepheromoneontheshortpath,andtheresultantpositivefeedback

ensuresthat almostall the antstake the optimumroute. Initially few antswill go along

thepathat all. However if food is found,moreandmoreantswill follow thepathasthe

chemicaltrail buildsup.

Closelyrelatedto artificial life is the subjectof anti-chaoswheresimple,but seemingly

disorderedlocalbehaviourswith arbitraryinitial stateevolveinto highly orderedstructures.

A simpleexampleof thisknown asLangton’sant[60] is consideredin section4.1.6.

2.1.4 Mirr or

Probablythe mosteffective simulationof socioinformaticprocesses1 may be seenin the

Mirror system[32][33][34][35]. Thissimulationenvironmentprovidesapowerfulplatform,

1“Socioinformaticprocessesaredefinedhereasinformaticprocesseswhich causebehavioural differentiation

amongindividuals who are basicallythe same,thusgeneratinga social structurein groupsof individuals”—

Hogeweg (1983)

Creatures

The CreaturesModel 24

uponwhicha numberof simulationshavebeenbuilt.

The mostsuccessful(and well documented)Mirror simulationis probablythe studyof

bumblebeecolonies[36]. Thisproducedtheoreticalresultswhichwerethenverifiedagainst

realcolonies,providing new understandingof thebeesbehaviour. Certainspeciesof bee

drive the queenout of the nestat a particulartime of year. However the mechanismsby

whichthisoccurswerenotclear. A Mirror simulationwasdeveloped,theprimecomponent

of which wasthedominancerelationsbetweenmembersof thenest. Whenever two bees

meta confrontationwassimulated,takinginto accountthe importanceof eachparticipant

within thenest.Awardsof rankweremadedependingon theoutcomeof thechallenge.It

wasfoundthatbeesin thecenterof thenestrosein rank,not by winningmany challenges

— they frequentlylost challenges(for exampleto the queen),but on the occasionsthat

they did win therewardsweregreater. Converselyotherbeescouldwin many challenges

againstlowly colony members,but would gain little in reward. After a certainperiodof

time(dependentuponsimulatedconditions)thedominancerelationswithin thenestwould

evolvesuchthatthequeencouldno longerretaincontrolof thenest,andwould beforced

out. Having demonstratedthe conceptin a “Mirror world” it was possibleto observe

identicalactionstakingplacein realcolonies(thesimulationshaving told observerswhat

to look for).

Mirror usersadvocatea TODO modelof animalbehaviour: individualssimply do what

thereis “to do”. However the implementationof thesesimplebehaviours is somewhat

more complex. The systemis written in LISP, and modelsboth continuoustime and

space.DWELLERsexist in aSPACE,andarefurtherdefinedby aprivateskinSPACE(the

MIRRORterminologyfor aDWELLERSinternalstate),whichcontainseachDWELLER’s

state.ThesystemalsocontainsDEMONs.EachDEMON mayhaveanumberof TARGET

conditions.Whenthesearemet,theDEMON canforcea TIE (a DWELLER) to perform

anaction.OtherwiseDWELLERscannotobserveDEMONS.A SENTINELis aparticular

formof DEMONwhichisboundtoasinglePATCH(partof SPACE),andhencecanobserve

DWELLERswithin thatpatch.Thisallowsconfigurationsof DWELLERsto beexamined,

andmeta-level structuresto bedefined.

Agentsare revived periodically, by otheragentswhich hold pointersto them(usuallya

DEMON). DEMONSarealwaysrevivedwhenvariablesthey attachto areaccessed.They

maythendecidewhethertheirTARGETismet,andif soactivate/revive/influencetheirTIE.

Uponbeingrevived,anagentwill know whatactioncausedtherevival andmaymodify its

behaviour accordingly.

Creatures

The CreaturesModel 25

Thesystemis somewhatcomplex (only themostbasicform hasbeendescribedhere),but

it hasbeenclearly shown that by defininglocal behaviour of individualsin this fashion,

complex behaviour can occur on a global level and that knowledgeso derived may be

successfullyappliedto realsystems.Unfortunatelythecomplexity of Mirror modelinghas

limited theapplicationof thesystembyotherresearcherstofieldswhereit mayhaveproved

useful.

The successfuldivision and computationalmodel from biological simulation, and the

experimentalpower afforded to usersof the Mirror model must be aspiredto by the

Creaturesmodel. However it also demonstratesthe dangerof complexity, as this has

preventedtheexploitationof Mirror whereit shouldhaveprovedinvaluable.

2.1.5 *Logo

Thisvariantof theLOGOlanguage[54] developedfor theConnectionMachine[29] provides

multiple TURTLEs which may be instructedto move in an SIMD (Single Instruction

Multiple Data)fashion.They moveoveranarrayof fixedelements,calledPATCHeswhich

maybeusedasatraditionalCA. Finally thereis provisionfor serialcode(theOBSERVER)

whichrunsin parallelwith theTURTLEsandPATCHes.

The systemis an experimentalprogrammingenvironment,which allows naive usersto

easilyoperatea connectionmachine,andto someextentexploit the parallelismafforded

there.In thatsenseit maybesuccessful,butasabasisfor serioussimulationit hasanumber

of shortcomings.

Themodelisoverly rich in providingTURTLEs,PATCHesandOBSERVERs. These

structuresdonotoperatetogetherin aconsistentfashion— mostobviouslyTURTLEs

operatein a continuous,infinite space,while PATCHesform a discrete,finite space

(*Logo PATCHesbeing only a pale imitation of the generalentitieswhich drive

Mirror models).

Someof the“Primitive” operationsareundulyheavyweight,allowing therealissues

of a simulationto beglossedover. The“Sniff ” operatorfor exampleconsidersthe

valueof avariableoveranumberof PATCHesandcalculatesthelocalgradientof the

variable(in two dimensions).While thismaybeausefulthing to do, it is difficult to

considerit asa “primiti ve” giventheamountof samplingandcomputationinvolved.

Someof theparalleloperationsareambiguouslydefined.By allowing anobjectto

Creatures

The CreaturesModel 26

performarbitraryoperationsuponanother,theorderof evaluationbecomesimportant.

Thismaypotentiallyreduceparallelism.

Thereis little enforcementof locality in themodel— any objectmaycommunicate

with any other provided it hasa methodof referencingit. In particularthe OB-

SERVER existsin a totally globalfashion,makingit difficult to ensuretheintegrity

of simulationsdeveloped.

Of the problemsin the *LOGO system,the first is the most interesting. Examiningthe

codeprovidedwith thesystemfails to provideany illustrationof PATCHesandTURTLEs

operatingtogetherin aneffective manner. EitherPATCHesareusedasCA or TURTLEs

areusedto provide an agentbasedmodelingenvironment,with little useful interaction

betweenthe two modellingtechniques.A numberof examplestaken from the *LOGO

programmingmanualareconsideredhere.

The “Ants” example(figures2.2, 2.3 and2.4) describesa systemof antsrepresentedby

TURTLEswhichmovearoundsearchingfor food. Trailsaremarkedby forcingPATCHes

tocarrypheromone.Thepatchesreducetheirpheromonelevelby afactorateachtimestep.

There’s alsoa nest,which operatesin a similar fashion. The PATCHesarea somewhat

inefficient way to hold pheromone,asthey exist at all spacebut carryusefulinformation

only overa verysmallsubsetof thatspace.It wouldbeequallypracticalto useTURTLEs

to hold this databy creatinga classof TURTLE which remainsstationarysignifying the

presenceof pheremoneat a particularlocation. TheObserver initializes the system,and

thenaddsnew Ants after a while. Theexistenceof an observer is usefulbut the work it

performsin thiscasecouldjustaseasilyhavebeenimplementedby a TURTLE.

By contrastthe “Fire” example(figures2.5 and 2.6) usesonly PATCHes,and operates

entirelyasCA. PATCHesreadtheir neighbors,thensettheir own state.Thefinal example

“Rope”(figures2.7 and2.8) representsa ropewith oneenddrivensinusoidaly, the other

endbeingfixed. Themid pointslook to theTURTLE on their left andright, andcalculate

theirvelocityaccordingly(PATCHesplaynopartin thismodel).Thoughit appearsatfirst

sightthemodelreliesononly localcommunication(eachTURTLE observesits immediate

neighbors)thesimulationreliesonany agentbeingableto talk to agentsthatit canidentify

(by somewhatunqualifiedmeans),evenwhenthetwo agentshavemovedapart.

Theavailabledocumentationfails to provideasingleexamplewhereTURTLEs,PATCHes

and the OBSERVER are all usedtogetherin an effective fashion. Any single one of

thesemechanismis computationalycomplete,andhencethe inclusionof all threeis an

Creatures

The CreaturesModel 27

to turtle-demon

ifelse :my-food > 0 [look-for-nest][look-for-food]

end

to look-for-nest

ifelse ask patch-here [:nest?]

[make "my-food 0 rt 180 fd 1 setc red]

[demand patch-here

[make "pheromone :pheromone

+ ask turtle-here [:pheromone-drop-size]]

if :pheromone-drop-size > 0

[make "pheromone-drop-size :pheromone-drop-size - 0.6]

seth uphill "nest-scent right random 40 left random 40 fd 1]

end

to look-for-food

ifelse ask patch-here [:food > 0]

[make "my-food 1

demand patch-here [make "food :food - 1]

make "pheromone-drop-size 35 setc yellow

rt 180 fd 1]

[make "pheromone-here ask patch-here [:pheromone]

if :pheromone-here < 3.0

[ifelse :pheromone-here < 0.2

[rt random 40 lt random 40]

[seth uphill "pheromone]]

fd 1]

end

Figure2.2: Ant foragingTurtleProcedures

Creatures

The CreaturesModel 28

to setup

make "food 0

make "pheromone 0

ifelse (dist 0 0) < 5 [make "nest? true make "nest-scent 1000]

[make "nest? false make "nest-scent 1000 / dist 0 0]

if (dist 20 0) < 4 [make "food 1]

if (dist -24 -36) < 5 [make "food 1]

if (dist -44 44) < 6 [make "food 1]

set-diffusion-rate 0.15

update-colors

end

to patch-demon

diffuse "pheromone

make "pheromone :pheromone * 0.95

update-colors

end

to update-colors

ifelse :nest? [setc purple]

[ifelse food > 0 [setc blue]

[scale-color green :pheromone 0 2]]

end

Figure2.3: Ant foragingPATCH Procedures

Creatures

The CreaturesModel 29

This program simulates the foraging behavior of ants.

Ants search for food (shown in blue), then leave a pheromone

trail as they return to the nest (shown in purple). Other ants

follow the trail to the food, then reinforce the trail on

their way back to the nest.

Instructions for use:

* Type SETUP to setup the ants.

* Then type STARTD (or GOFOR<number>) to start the demons.

Notice how the colony as a whole seems to exploit the food sources

systematically, starting with the closest food source then working

outward.

to setup

clear-all

reset-clock

fep [setup]

make "total-ants 100

end

to observer-demon

if clock < :total-ants

[create-custom-turtle 1 [setxy 0 0

set-sniff-distance 3.0

make "my-food 0]]

end

Figure2.4: Ant foragingOBSERVER Procedures

Creatures

The CreaturesModel 30

to patch-demon

if red? [burn-a-bit

demand patch 0 [if color = green [setc red]]

demand patch 90 [if color = green [setc red]]

demand patch 180 [if color = green [setc red]]

demand patch 270 [if color = green [setc red]]]

end

to red?

(color >= 4) and (color <= 10)

end

BURN-A-BIT makes the trees become darker as they burn

to burn-a-bit

if color > 4 [setc color - 1]

end

to border-cell?

(xpos = left-edge) or

(xpos = right-edge) or

(ypos = top-edge) or

(ypos = bottom-edge)

end

Figure2.5: FirePATCH Procedures

Creatures

The CreaturesModel 31

This program simulates the spread of a forest fire.

The spread of the fire depends critically on the density of trees.

Instructions for use:

* Type SETUP <number> to setup up the forest.

* Start the demons with STARTD to watch the fire spread.

Things to try:

* Try different densities of trees (different inputs to SETUP).

* Try different resolutions (use SET-SCALE).

to setup :percentage

fet [die]

clear-patches

fep [if :percentage > (random 100) [setc green]

if xpos = (left-edge + 1) [setc red]

if border-cell? [setc blue]]

end

As an alternative to starting the demons,

you can use the BURN procedure

to burn

fep [patch-demon]

if (patch-subtotal [color = red]) > 0 [burn]

end

Figure2.6: FireOBSERVER Procedures

Creatures

The CreaturesModel 32

to setup

seth 0

sety 0

setx who + left-edge

if xpos = left-edge [setc green

deactivate-demon "rope-demon]

if xpos > left-edge [setc red

deactivate-demon "input-force-demon]

if xpos = right-edge [setc blue

deactivate-all-demons]

make "yvelocity 0

make "yaccel 0

make "spring-constant 0.3

make "friction 0

end

to input-force-demon

sety :amplitude * sin ask observer [:frequency * clock]

end

to rope-demon

make "yaccel :spring-constant * (((ask who - 1 [ypos]) - ypos)

+ ((ask who + 1 [ypos]) - ypos))

make "yvelocity (:yvelocity + :yaccel) * (1 - :friction)

fd :yvelocity

end

Figure2.7: RopeTURTLE Procedures

Creatures

The CreaturesModel 33

This program simulates waves on a rope.

The rope is composed of turtles. Each turtle acts as if

it is connected to its neighbors by imaginary springs.

The left end of the rope moves up and down sinusoidally.

The right end of the rope is fixed.

Instructions for use:

* Type SETUP to setup the turtles.

* Then type STARTD (or GOFOR<number>) to start the demons.

Things to try:

* Vary the frequency of the input force. Try: MAKE "FREQUENCY2

* Vary the friction. Try: FET [MAKE "FRICTION .01]

to setup

clear-all

create-turtle 2 * right-edge

reset-clock

fet [setup]

make "frequency 4

make "amplitude 32

nowrap

end

Figure2.8: RopeOBSERVER Procedures

Creatures

The CreaturesModel 34

unnecessarycomplication. *LOGO’s aim is to provide a programmingenvironmentin

which inexperiencedprogrammersmayexploit thepower of parallelcomputation.From

suchaperspectivetheoverlyrichsetsetprimitivesmaybeconsideredanadvantageallowing

the programmerto selectthe techniqueswhich bestsuit the problemat hand. From a

theoreticalviewpoint however, as a tool for understandingthe natureof computational

systems,*LOGO is unlikly to beof benefit.PATCHes,TURTLEsandOBSERVERseach

individually provideamodelof computationwhich is sufficiently complex thatit defiesall

but thesimplestanalysis.Only by strippingsuchmodelsto their simplestcomponentscan

therebeany hopeof understandingthenatureof systemsthey maydescribe.

2.2 Defining Creatures

2.2.1 An Informal Description of the CreaturesModel

A Creaturessimulationconsistsof anumberof activeelements(creatures)whichexist in a

discretespace,andupdatesynchronouslyatdiscretetimeintervals.A simulationis defined

by specifyingthe behaviour andinitial locationof eachcreature.The complexity of the

simulationis dependentnot on thecomplexity of the individual elements,but on thevery

largenumbersof suchelements,andthe interactionsbetweenthem. In developingsuch

simulations,the modelallows the userto experimentwith and isolatethe characteristic

propertiesthatdeterminethesystem’sbehaviour2.

Eachcreaturehasits own statewhich only it maymodify, thoughsomeof this statemay

be madevisible to othercreatures.The behaviour of a creaturemay dependon its own

state,andtheexternalstateof any othercreaturesin thesamelocation.Thisbehaviour may

includechangingits own state,creatingnew creatures,andmoving to anadjacentlocation.

Themodelmaybesummarisedasfollow:

1. A simulation shall be composedof agentswhich shall updatetheir state syn-

chronously.

2During thissectionthefollowing definitionsshallbeused:

“system”: therealworld structurebeingsimulated.

“model”: thesimulationtechniquesbeingappliedie Creatures.

“simulation”: therulesandresultantbehaviour whichattemptto approximatethe“system”.

Creatures

The CreaturesModel 35

2. An agentsstateshallberepresentedasa finite numberof parameters.Thesemaybe

usedto influenceany futurebehaviour.

3. An agent’s stateshall beprivateto that agentwith the exceptionof oneparameter,

known asthatagent’s type.

4. An agent’s locationin spaceshallbedefinedby a subsetof theagentsstate,which

theagentmaynotdirectlyoperateupon.

5. Thespacein whichagentswill exist shallbediscrete,uniform,andinfinite.

6. An agentmay indirectly changeits locationby moving to an “adjacent” location,

relativeto its currentlocation.

7. Interactionsbetweenagentsshall be limited to the detectionof other agents,by

observingthenumberof agentsof agiventype.

8. Agentsmayonly observeotheragentswhoselocationis identicalto theirown.

9. An agentmaycreateany numberof new agentsin its currentlocation.Thesemaybe

of any type,asspecifiedby theparent.This is theonly datatheparentmaypasson.

Theserulesdescribeasimplemodelwhichcanbeimplementedefficiently, while providing

a sufficiently rich environmentto developsimulations,of a similar level of complexity to

thosefoundin cellularautomata.

Theparametersof themodelmayjustifiedasfollows:

A simulation shallbecomposedof agentswhich shallupdatetheir statesynchronously.

The emphasisof a modelshouldbe on the active agentswithin a systemratherthanthe

spacewhich they occupy (asillustratedby thelimitationsof CellularAutomata).Theuse

of discretetime maybe regardedasa globalexchangeof information. However discrete

timesystemsaregenerallyeasierto programandto implement.Theuseof aprogramming

modelensuresthat thesynchronousnatureof simulationsis explicit. Without predefined

modelof computation,thenatureof time within a simulationmaybe unclear, increasing

thelikelihoodthatglobalsynchronizationmaybeaccidentallymisused.

An agentsstateshall be representedasa finite number of parameters. Thesemay be

usedto influenceany futur e behaviour. Eachcreatureessentiallycarriesits own data

spacewith it. Thisencapsulationprovidesthenecessaryseparationbetweenagentstoallow

Creatures

The CreaturesModel 36

theparallelimplementationof a system.It alsosimplifiesthedevelopmentof a creatures

behaviour specification,asa behaviour maybedevelopedfor oneor a few creatures,then

scaledto operateonmany creatures.

An agent’s state shall be pri vate to that agent with the exceptionof one parameter,

known asthat agent’s type. By separatingtheprivateandpublic stateof a creaturethe

variablesthatareusedin interactionsaremadeexplicit. A creaturemayonly interactbased

uponthepublicstateof othercreatures,withoutconcernthatinformationmayaccidentally

be distributeddueto programmingerrors. Considerfor exampleantssearchingfor food

— an ant may rememberthe locationof a pieceof food, but hasno explicit methodof

communicatingthis informationto anotherant. By holdingthelocationin its privatespace

any collectivebehaviour is provennot to bearesultof directobservation.

Typically “type” will bea simplescalarquantity(if only from thepracticalperspectiveof

implementingnon-scalertypes). However thereis no theoreticalreasonwhy typeshould

not bea vectorof arbitarycomplexity. Thedistinctionof the typeparamenteris that it is

observable,andhenceis imprtantin thecommunitationof informationbetweenagents.

An agent’s location in spaceshall be defined by a subsetof the agentsstate, which

the agentmay not dir ectly operateupon. By hiding a creature’s absolutelocationthe

existenceof speciallocationsis prohibited. This preventscreaturesfrom migrating to

certainhardcodedlocations.In a systembeingsimulatedit is unlikely thattherealworld

elementswould be able to identify their location without referenceto external stimuli.

Thisdoesnotpreventcreaturescountingtheirown movementsto createtheirown personal

coordinatesystem.

The spacein which agentswill exist shall bediscrete,uniform, and infinite. Discrete

spacegreatlysimplifiestheinteractionof creatures,andtheimplementationof themodel.

A creatureis eitherin thesamelocationasanotheror in a differentlocation— theissueis

alwaysclearcut. Theuniformity of spaceprovidesthesimplestof environmentsin which

creaturesmay interact. Shouldit benecessaryto indicatespacialfeatures,creaturesmay

beplacedin locationsto actassignposts.Theprovisionof explicit spacebasedoperations

would thereforeberedundant(asit is in *Logo). By makingspaceinfinite thereis noneed

to considerboundaryconditionsunlessexplicitly requiredby a specificsimulation(which

maydefineboundariesby meansof aspecificcreaturetype).

Creatures

The CreaturesModel 37

An agent may indir ectly changeits location by moving to an “adjacent” location,

relative to its curr ent location. By limiting the movementsof a creaturelocality is

encouraged,andtherequiredconnectivity of spaceis reduced(whichmaybeimportantfor

anefficient implementation).Movementmustbespecifiedrelative to a creature’s current

locationasthereis no methodof specifyinga specificlocation.This ensuresthatpartof a

simulationwhichoperatescorrectlywill continueto functionin anew location,facilitating

easierdevelopmentanddebugging.

Interactions betweenagentsshallbelimited to thedetectionof other agents,by observ-

ing the number of agentsof a given type. Specificationof the interactionof creatures

is a potentialsourceof complexity in a modelsuchas this. Limiting the interactionto

this simplified form may make certainkinds of simulationmorecomplex. However an

alternativemoreelegantsolutionhasnotbeenfound.

It is essentialthat interactionsbe limited to observation dueto the parallelnatureof the

system(theorderof evaluationof creaturesshouldbehiddenfrom theuser).Suchamodel

ensuresthat eachdataelementwithin the systemis writable by only onecreature— the

creaturethat holds that dataasa parameterwithin its state. If a pair of creatureswere

allowedto performa write operation(theoreticallyat thesametime) on thesamedatait is

unlikely thatbothwouldbeableto succeedin any predicatblefashion.Thelimited form of

interactionavailableallowsasnapshotof aspaciallocationto beproduced,andusedasthe

input for eachcreature’s transitionfunction. The“real” agentsin thelocationmaythenbe

processedentirelyindependently, their instantaneousexternalstatehaving beingcaptured.

Agents may only observe other agentsif their locations are identical. This greatly

simplifiestheinteractionof creatures,astheobservationof othercreaturesisnow associative

anddistributive. If A canseeB thenB canseeA, andif A canseeB andB canseeC

thenA canseeC. Any operationperformedby a setof creaturesis self contained,and

is (in a weaksense)participatedin by all creaturesin the location. This constraintalso

preventsthehiddensharingof datain asimulation— communicationatadistancedoesnot

occurwithoutacarrierof thatinformationmovingbetweenthetwo locations.By explicitly

codingthis into a simulationthetruenatureof theinteractionis madeclear.

Thealternative to a strict locality would leadto vastly increasedcomplexity in thespeci-

ficationof behaviour — it mustbeconsideredwhetherthedistanceat which interactions

maytake placeis a functionof theobserver, theobserved,bothor neither. Becausespace

is discretesomeform of neighborhoodfunctionbasedupona numberof theseparameters

Creatures

The CreaturesModel 38

would needto bespecifiedfor eachsimulation.Theaddedcomplexitiesdo not justify the

extensionof themodel.

An agent may createany number of new agentsin its curr ent location. Thesemay

be of any type, asspecifiedby the parent. This is the only data the parent may pass

on. Duringthedevelopmentof theCreaturesmodelanumberof systemsweredeveloped

which allowed morecomplex informationto be passedon to offspring. However asthe

systemdevelopedthemechanismsnecessarytoperformthisoperationbecameincreasingly

complex, from both a developerand user’s perspective. In reactionto this, the current

form of agentcreationwasdeveloped. Although this greatlyrestrictedthe model it has

provedpossiblewith experienceto convert all previousmodelsto this form despitetheir

apparentcomplexity. Therestrictedformof producingoffspringgenerallyproducessimpler

simulations.

A numberof thesepointswould appearto overly restrict the modelandperhapsprevent

the developmentof certain typesof simulation(for example: that creaturesmay only

observecreatureswith identicallocationsmightappearto limit thetransferof information

arounda system),in practice,it hasprovedpossibleto overcomethesedifficultieswithout

compromisingtheintegrity of themodel.Techniquesapplicablein onesimulationareoften

usefulin others,andthe examplesfound later in this reportshouldillustratesomeof the

commonprogramstructures(in additionto clarifying thedetailsof themodel).

2.2.2 A Formal Definition of the CreaturesModel

TheCreaturesmodelmaybedefinedin amorerigorousfashionby theuseof settheory, and

finite statemachinetechniques[30][46][37]. In doingsoanaccuratedefinitionof themodel

will beproduced.In additiontoclarifyingthepreviousinformaldescription,amathematical

form of asimulationmaypotentiallybetransformedto amoredesirabledescription.

A singlecreatureat a singleinstantin time (referredto asa creatureinstance)is a state

machine

(2.1)

Where rangesover , thesetof statesattainableby a creature.States arein fact the

triple where is the location, thecreature’s typeand the internalstateof the

creature.

The outputof a creature() representsthe creature’s childrenwhich will be placedinto

Creatures

The CreaturesModel 39

thesystemat thenext time step. This setof creatureinstancesis formedby applyingthe

outputfunction to andaninput to thecreaturefrom therestof thesystem:. This

input (which is definedin a following section)is basedonthesetof creatureswhichhavea

location . All creaturesin theset havetheinternalstate 0 (astateglobally

definedby rulesof thesystem)andlocation (the locationof the parentcreature).

mayberangefreely for eachchild, specifiedby theoutputfunctionof theparent.

Similarly thenext statefunction is appliedto and to givea new creatureinstance.

Thisnew instanceis usedto representthecreatureat thenext timestep— theold creature

instanceonlyexistsatasinglepointin time(thecurrenttimestep),andis thereforediscarded

onceits outputandnext statehave beencalculated.This new instanceis distinctfrom the

child creaturesof theoutputfunction,asboth and elementsof its statemaybefreely

specified.In addition maybeindirectlymanipulated.

Space

Thelocationof a creature is ann-tupleof integers(theexamplesdescribedelsewherein

this thesisaretypically of ordertwo).

Thelocationof creatureinstance (2.2)

A creatureslocationdefinesthe setof creaturesit may interactwith (which areusedto

producetheinput to thetransformationfunctions and). This is expressedin termsof

the“CanSee”relation definedsuchthat:

(2.3)

where and arecreatureinstances.A creaturemayseeanotherif it occupiesthesame

locationin discretespace.

Theconceptof locationis alsousedto restrictthemovementof creatures.Eachlocation

hasa neighborhood

Thesetof locationsa creatureat location maymoveto in a singletimestep

(2.4)

Theneighborhoodoperatoris associativewith translationsuchthat:

(2.5)

where , and arelocations,and is any vectorof appropriatedimmension.

Creatures

The CreaturesModel 40

Next statefunctionsalwaysproducecreatureinstancessuchthat:

(2.6)

It is requiredthat the definition of be free from referencesto absolutelocations— if

theentiresystemis translatedits behaviour shouldremainunchanged.This is achievedby

definingthe in termsof a function with thepropertythat:

0 (2.7)

where0 representsan origin locationsuchat : 0 0 . The operationof

additionof vectorsandcreatureinstancesis definedsuchthat:

(2.8)

Thenew creautureinstanceis a translationby , all otherparametersbeingunchanged.

maythereforebeensuredto befreefrom absoluterefrencesto locationby definingit as:

(2.9)

Thenotation maybeusedasshorthandfor , representingthe locations ’s

next stateinstancecould occupy. The abbreviatedform is morereadable,and indicates

bettertheintentionof thestatement.

Theoutputfunctionalwaysproducescreaturesat thelocationof theparent:

: (2.10)

Onceagainit is necessarythatthefunctionis freefrom absolutereferencesto locationand

hencea function is created:

: 0 (2.11)

maythenbedefinedas

(2.12)

A neighborhood maycontaina locationDIE. This singlelocationwill generallybe

adjacenttoall otherlocationsandhastheadditionalspecialpropertiesthat ,

and (acreatureatthislocationmaynevermoveto any otherlocation).

This is usedin thefollowing sectionsto removecreaturesfrom thesystem.

Creatures

The CreaturesModel 41

Observations

At an instantin time a creaturessystemis a setof creatureinstances . The input of a

creature instanceis baseduponthesubsetof creaturesin thatmaybe observedby .

Only asubsetof acreaturesprocessspacemaybeobserved— thecreaturestype: , as

thisensuresthatinformationwhich is privateto a creatureremainsso.

A creature mayobservea subsetof thesystem in which is exists:

: (2.13)

representsthesystem asperceivedby creature .

Theinformationavailableto a creatureis thereforethecollection(not a set,asduplicates

areallowed)of creaturetypes:

(2.14)

Thiscollectionis usedaspartof theinputto thetransitionfunctionsto influenceacreatures

next stateandoutput.

Time

TheCreaturesmodelhasso far beenconsideredto existsat a singlepoint in time. Each

creaturewithin thatsetproducesanoutputwhich maybecollectedto producetheoutput

of a completesystem.

: : : (2.15)

Theoutputof a setof creaturesis theunionof all creaturesthatareborn,andall creatures

thatdonotdie.

A simulation representsa completecreaturessystemexisting over time. Having been

initialised to the state 0 it exists at discretetime steps 0. is the setof creature

instancesrepresentingthesystemat time .

1 (2.16)

Informationpreservingcreaturedefinitionsmaybeprepared- in thesespecialcases“nega-

tive” timemaybeintroducedinto thestatehistory. This is mosteasilyobservablewhen

and arerestrictedsuchthat

: : (2.17)

Creatures

The CreaturesModel 42

That is no creaturesmay be createdor destroyed. Considera sytemwhereall creatures

move eastat eachtime step— given the state of sucha systema unquiestate may

trivially beconstructedsuchthat . Thereforegivenastate 0 it isequallypossible

to contructa uniquestate 1 suchthat 1 0, eventhoughthesystemwasonly

consideredto becreatedat time 0.

CreatureTraces

In additionto slicesthroughthetime axis,we mayalsoconsiderthecontinuousexistence

of a singlecreatureasit existsthroughtimeas:

undefined 0

0 0

: 1 0 :

undefined :

(2.18)

Where 0 is thetimeatwhichcreatureis first created,eitherby theinitialisationof the

system(0 0) or by beinggivenbirth to by anothercreature(0 1).

At this time(0) thecreatureis createdin aninitial state.At eachsubsequenttimestep

thecreaturecalculatesits own next state,until suchtime it decidesto die. Outsideof this

time interval thecreaturetraceis notdefined.

A creature() existsat time if

(2.19)

It mayalsobenotedthat thesedefinitionsof and guaranteethata creaturetracewill

becontinuous:

0 : (2.20)

thatis if acreatureexistsat time , andit existsandtime thenit mustexist atall times

between.

Stability and local equivalence

Two creatureinstances areweaklyequivalentif for somespecificfunction ,

. They arestronglyequivalentif for anyfunction 3.

3Whenconsideringequivalenceit shouldbenotedthat in practisethestatetransition“functions” maynot be

truefunctions— many simulationsemploy non-determinism

Creatures

The CreaturesModel 43

Similarly thestability of completesystemsmaybeconsidered.A creaturesystemis said

to beweaklystablewhenfor aspecificfunction :

1 2 (2.21)

andstableif for anyfunction:

1 (2.22)

In sucha case,for truetransition“functions”:

1 (2.23)

Guards

Thepartof acreaturesnext state,andoutputfunctionswhichmaybedefinedby anenduser

(and) arespecifiedasa setof conditions,known asguardsthat , and

mustsatisfybeforeanoperationis performed.As thetransitionfunctionis appliedto

asinglecreaturetheseparamentersmaybeabbreviatedto , and — thestate,type,and

input of thecreaturebeingevaluted. Theseguardsandactionsdefine 1 and .

For example

1 DIE (2.24)

Where is thecollectionof typesof creaturesthatmaybeobserved,asdefinedpreviously.

is thenumberof elementsin thecollection.Thecreaturewill performtheactionDIE if

it canseemorethenonecreature(thecreatureitself is includedin , hence# will always

beat least1). For convenienceguardsareevaluatedin order. Thisremovestheneedto test

for all previouscases.

1 DIE

TRUE CENTER
(2.25)

The operationDIE is a “terminal” operation,and thereforedoesnot return. Therefore

operationCENTERwill only beperformedwhenthefirst operation’sguardhasfailed.

Guardconditionscommonlyarebasedaroundthenumberof creaturesof agiventypewhich

arevisible. Thecardinalityoperationis thereforeextendedto takea parameter:

: (2.26)

Theoperation #3wouldthereforereturnthenumberof creaturesof type3 thatcanbeseen.

#1 1
1 CENTER

TRUE NORTH

TRUE DIE

(2.27)

Creatures

The CreaturesModel 44

Thisexamplealsoshowshow guardstructuresmaybeusedaspartof actions.If acreature

canseea singlecreatureof type1 it movesnorth,unlessit is itself that type1 creaturein

which caseit remainsin its currentlocation. If a type1 creaturecannotbeseenthenthe

currentcreaturedies.

Actions

Theactionsavailableto a creatureare

Changesof internalState

Changesof Type

Changesof Location

Birth of new creatures

Thefinal item— Birth is dealtwith independentlysinceit relatesto , ratherthan .

A creaturemayperformarbitraryoperationsuponits internalstate . A creaturemay

alsoactuponits externalstatus(or type) . Theresultsof thesewill bepassedon to

: 1.

Thecreatureslocation is notpassedinto thetransitionfunctionasdefinedby theuser(),

andhencemaynot beusedaspartof thebehaviour definition. Movementis restrictedto

relativeoperations.Theresultof will beacreatureatalocationin , but theresult

of will beat a locationwithin within 0 . Thegraveyardlocationis alsoincluded

in this domain. The DIE operatorsets . This location is

usedto indicatethat shouldnotbeincludedin theset 1. All movementoperators

areterminaloperators.That is, following a movementoperatorthevaluesof , , and

areformedinto a triple, andreturnedas . No furtheroperationsmaybeperformed.

However if nomovementoperatoris presentwithin anaction,thenotherguardswithin the

rulemaybetested,andadditionalactionsperformed.

For exampleif is definedasaninteger:

1 # 1

10 0;

TRUE FORWARD

(2.28)

This rule movesa creatureFORWARD. As it movesit countsthe numberof creaturesit

sees.Whenit hasfound10or moreit turnsLEFT (aterminaloperator, asit it is assumedto

Creatures

The CreaturesModel 45

includethechangeof location),andresetsthecount.It shouldbenotedthatuponobserving

acreature,theactiontakenis doesnot includea terminaloperator. Thefollowing rulesare

thereforetested,andthecreaturemoveseitherFORWARDs or LEFT.

Birth

A creaturemaygive birth to any numberof othercreaturesof any type. Thesewill begin

their ”life” at thelocationof theirparent.

: (2.29)

However in termsof the definablepart of the transitionfunction births take placeat the

origin:

: 0 (2.30)

Offspringperformno operationsat time . Their stateis setto 0, andthey areinserted

into 1 in preparationfor 1, whenthey behave accordingto thestandardrule

set.

For Example:

1

1
0 1;

1 0;

TRUE WANDER
(2.31)

All creaturesperformtheoperationWANDER. However, shouldaFEMALE andaMALE

find themselvesalonetogether, a singleoffspring will be produced. The offspring of a

specificfemalewill alternatebetweenmaleandfemale.

In additionto thetransitionrule it mayalsobenecessaryto specifytheinitial stateof new

creatures . In theaboveexample 0 wouldsuffice.

2.2.3 Equivalences

For the Creaturesmodelto begenerallyuseful it mustbecomputationallycomplete[68].

The simplestmethodof establishingthis is to demonstratethat the Creaturesmodel is

equivalent to anothersystemwhich hasbeenestablishedas being complete. The most

Creatures

The CreaturesModel 46

basiccomputationallycompletesystemis aTuringmachine,andhencetheimplementation

of a Turing machinein CA will be considered.In additionthe equivalenceof Creatures

andCA maybesimply demonstrated.This suggestsa methodby which CA rulesmaybe

mechanicallytransformedinto Creatures,thoughin aninefficientmanner, andshows how

basiccomputingmodelsmaybeimplementedwithin Creatures.

The Turing Machine

A TuringMachine[64] consistsof a finite statemachineanda tapedividedinto cells,each

cell containingat most, one symbol from an allowable finite alphabet(without loss of

generalitywe may consideronly a binary alphabetof symbolor no-symbol). The finite

state“unit” may

1. readthecontentsof a cell;

2. print asymbolon thecell read;

3. moveto thenext state;

4. movetheread/writeheadonecell left or right;

Theequivalenceof theCreaturesystemtoaTuringmachinemaybeshownbyimplementing

aTuringmachineasfollows:

1. thesetof creaturestypesis definedasonetyperepresentingthesymbolandonetype

representingthefinite stateunit (FSU).

2. the“tape” is replacedby thepresenceor otherwiseof symbolcreatureswithin a one

dimmensionalspace,eachsymbolcreatureremainingin a singlespecificlocation

from brith to death. Whena symbolcreatureobservesthe FSU creatureit always

dies. However in suchan event the information carriedby the symbol hasbeen

observedby theFSUandmy bereprintedif necessary.

3. the“finite stateunit” is representeda singlecreaturein thesystemwhichcan

(a) detectthepresenceof a symbolcreature;

(b) changeits state;

(c) givebirth to a new symbolcreature

(d) moveto eithertheleft or theright;

Creatures

The CreaturesModel 47

Any systemwhichcanimplementa Turingmachineis by definitioncomputationallycom-

plete, and can be shown to be equivalent to any other completesystem. Creaturesis

thereforecomputationallycomplete.

Cellular Automata

CA are also computationallycomplete,and hencethe completenessof Creaturescould

alternatively have beenshown by implementinga CA in Creatures.ImplementingCA in

Creaturesalsorevealsthekey differencesbetweenthetwo systems.Usingatransformation

basedon thisequivalenceit shouldbepossibleto mechanicallyimplementany CA system

in Creatures.Howeversuchanimplementationwould requiremany creaturesfor eachCA

cell, andwould thereforebeinefficient.

Theconverseoperation(toconvertCreaturestoCA) isnotalwayspossible,as(in thegeneral

case)in a Creaturessystemthereis no limit to thenumberof creatureswhichmayoccupy

a singlelocation.Any CA cell will have a finite limit on thenumberof statesit maybein

(bothby definitionof beinga finite statemachine,andby practicalliyof implementation),

andhencea limit to thenumberof creaturesit couldsimulateholding. Thishoweverdoes

not invalidatethatCA arecomplete— it is simply thatthereis nosimplemapping.

To implementCA within theCreaturesmodelthearraythatis thecellularautomatoncanbe

representedwith a regularmeshof identicalcreatures,eachof which remainsin thesame

locationfrom stepto step.Thearraywill thenbediscrete,it will computeat regulartime

intervals,eachcellwill haveafixednumberof states,beidentical,andupdatesynchronously

baseduponpreviousstates.

Theprimarydifferencebetweenthe“creature”arrayandthecellulararrayis in thehandling

of neighborhood.The Creatures“cansee”operatoris not capableof “looking across”to

neighboringlocations.Instead,theneighborhoodmustbeimplementedby forcing thecell

creatureto give birth to multiple “communicationscreatures”that traversethe spaceand

on travelling a setdistance(definedby the neighborhood)give birth to an “information

creature”andthendie.

Eachcell updateswhenit hasa full complementof “information” creatures.This ensures

that all updatingis synchronous(sinceeachcell creaturewill be both broadcastingand

receiving thesamenumberof neighbors).Thecellularautomatonwill therefore“compute”

at time intervalsproportionalto thelongestpathwithin theneighborhood.

Using this framework it is possibleto mechanicallytransformany CA simulationinto

Creatures

The CreaturesModel 48

an equivalent Creaturessimulation(thoughthe practicality of sucha transformationis

limited). CA andCreaturesthereforecanbe seento be computationallyequivalent,and

henceCreaturesis shown to becomplete.

2.2.4 Complexity

In general,the task of computingthe “next state” of a creaturesystemis a many body

problem— a largenumberof independentagentseachpotentiallyinfluencingany andall

of theothers.It maybeconsideredashaving two parts

determiningtheinputof eachcreature(mapping)

performingthetransformationfunctiononeachcreature(stepping).

The complexity of the transformationfunction may be assumedto be independentof its

inputs,andhencesteppinghasa complexity of (creatureswould requirethefunction

to be applied times,taking timesaslong for creaturesaswould be requiredfor

one).

Withouttheapplicationof apriori knowledgeeachcreaturemustbecomparedtoeachother

creatureto establishwhetherthey can“see” eachother. In thegeneralcasethe mapping

operationhasa complexity of 2 — eachcreaturemustbecomparedto everyother.

Thetotal time to naively stepa systemis therefore 2 . However the time taken

to calculatethe input to eachcreaturerapidly comesto dominatethe performanceof the

system.Thesystem’ssteptimewill beapproximatelyproportionalto 2. A systemof this

type will rapidly becomeimpracticalto implementasfor largepopulationseven a small

increasein thenumberof creatureswill haveadetrimentaleffectonperformance.However

locality maybeexploitedto improvethissituation.

If the systemwere implementedwith oneprocessorper location(as in a CA), then the

complexity of mappingwould betotally removed— any creatureon theprocessorwould

be able to seeall othercreatureson the processorso no calculationof inputswould be

requiredother than to compile a list of all creatureson the node. However this would

potentiallyreducesteppingperformance,asprocessorsrepresentingemptylocationswould

be idle, while processorsrepresentinglocationswhich containmany creatureswould be

heavily loaded.

Creatures

The CreaturesModel 49

Theworst caseoccursgiven creaturesand processors.In sucha situationit would

be possibleto stepall creaturesin a single time unit by placing one creatureon each

node. However if spatiallocality is usedto placeonelocationon eachprocessorandall

creaturesshouldendup in a single location— 1 of processorsmuststandidle

while oneprocessorsteps creatures.Thesteppingoperationwouldthereforebe times

slower thanit ideallyshouldbe.

As will beseenin section3.2.2,by makinga tradeoff betweenthesetwo extremeimple-

mentationstrategies: no locality vs completelocality, aneffective largescalesystemmay

bedeveloped.

2.3 Conclusions

TheCreaturesmodelattemptstodraw onthebestfeaturesof currentcomputerarchitectures

andsimulationtechniques:

thesimplicity andparallelismof CA.

thefocuson interestingeventsfoundin DEVS.

theeaseof applicationof *LOGO.

thesimulationpowerof Mirror.

Ideasfrom thesesystemsare drawn togetherto producea logically coherentmodeling

paradigmandparallelcomputingarchitecture.Thearchitectureis computationallycom-

plete,andhasbeenshown capableof simply implementingbasiccomputingmodels.

The modelhasso far beenconsideredin the abstractwith only occasionalreferenceto

implementationandapplication. In following chapterstheseissueswill beconsideredin

greaterdetail to show thatCreaturesmaybeeasilyimplementedandappliedto a rangeof

problems.

Creatures

Implementing the CreaturesModel 50

3

Implementing the Creatures

Model

In orderfor Creaturesto bea practicalprogrammingenvironmentanda usefulsimulation

tool, it mustbepossibleto implementit effectively onat leastoneplatform. Creatureshas

beenimplementedon a numberof systems,eachwith its own strengthsandweaknesses

reflectedin a uniqueset of performancecharacteristics.The implementationstrategies

usedon eachtype of platformandthe techniquesdevelopedto improve performanceare

describedin thischapter.

TheserialimplementationonaNeXTworkstationprovidesacomplete,flexible, interactive

work environmenton which simulationsmay easilybe developed. Implementationson

parallel machinesare currently more difficult to work with, but offer potentially better

performancewhenlargepopulationsarebeingconsidered.

In orderthatdifferentimplementationsof thesystemmayfully complementeachother, a

languagefor specifyingCreaturesimulations(known asJAM) wasdeveloped. For each

platform,a pre-compilerproducesmachinedependentcodefrom a machineindependent

JAM specification.This allows simulationsto bedevelopedin thewell supportedNeXT

environment,thentransferredto ahighspeedsystemfor largescalesimulations.

3.1 The JAM Language

Duringearlydevelopmentof theCreaturessystem,ruleswerewrittenin thenativelanguage

of the simulator (C or objective C), using a macropackageto deal with the creature

specificconceptssuchasmovementandbirths. While this waseffective, andsimpleto

use,it precludedany possibilityof transferringsimulationsbetweensimulatorswritten in

Creatures

Implementing the CreaturesModel 51

Pancake

CC

Objective C File

Cinc

Rule File

Simulation

mpl

Cine

Rule File

Simulation

Pancake

Position File

Jam file

MPL File

NeXT MasPar

Figure3.1: CompilingaRulefor Multiple Platforms

differentlanguages,on differentplatforms. The creaturesspecificationlanguage“JAM”

wasdeveloped,allowing a simulationto bedescribedindependentlyof thefinal platform.

A precompiler— “pancake” takesa JAM specificationandproducesa sourcefile for a

specificsimulator. This may thenbe compiledusingthe appropriatelanguagecompiler

(figure3.1). PancakewaswrittenusingYaccandLex, andhasbeentargetedtoC,Objective

C,MPL, C* andOccam.Thecodeproducedmakesuseof systemdependentheaderfilesto

defineneighborhoodandinteractionmacros,simplifying theoperationof theprecompiler,

andreducingthetimerequiredto retargetit.

A simulationis specifiedin JAM by anumberof declarations(someof whichareoptional):

NEIGHBORHOOD:The directionscreaturesmay move in. Typically this may be

VonNeuman(four neighbors),Moore(eightneighbors)or Hex (six neighbors)[63],

thoughmorecanbeadded.Certainsimulatorsmaynotsupportall typesof neighbor-

hooddueto limitationsin theunderlyinghardware.Transputersimplementationsfor

examplearelikely to berestrictedto VonNeumanneighborhoodsdueto their limited

connectivity.

TYPES: Givesnamesto eachof theexternalstatesa creaturemaybein.

VARS: Definesthenamesandtypesof thestatevariableswithin eachcreature.The

Creatures

Implementing the CreaturesModel 52

availabletypesmayberestricteddependingon thesimulatorbeingused.

INIT: Definestheinitial stateof all creatures.

USE: allowssystemspecificcodetobeincludedinto therule,for exampleto redefine

thedisplayoperation.

RULE: Definesthestatetransitionfunctionfor creaturesin thesystem.

Thefinal declaration(RULE:) is basedontheguardsnotationdescribedin section2.2.2.A

ruleconsistsof a list of test-actionpairs(evaluatedin theorderin whichthey occur),where

the actionis performedonly whenthe test is true. An actionmay itself be a test-action

pair list. Alternatively it maybestatementor acompoundstatement.At eachtimestepthe

transitionfunctionis rununtil a terminaloperation(movement)is found,for eachcreature

in thesystem.

Theinputto acreatureis representedby the“cansee”function,whichreturnsthenumberof

creaturesin thecurrentlocationwith thespecifiedtype. As anextensionto this,a rangeof

creaturetypesmaybespecified,anda total of all creatureswithin thatrangeis given. The

birth operationalsosupportsranging,allowing onecreatureof eachtypeto becreatedin a

singleaction. In additionthebirth operationalsosupportsa multiplier, allowing multiple

creaturesto beproduced.

A formaldescriptionof theJAM syntaxis giventhefollowingsection(3.1.1),andexamples

of codemaybefoundin chapter4.

JAM has proved simple to use, and many rules have beendescribedusing it. These

have generallybeenmoreconcisethenequivalenthigh level descriptions.JAM provides

no looping constructs,functions,or otheroperatorsthat would be found in a traditional

programminglanguage,asthesearenot requiredwhendescribingCreaturessimulations.

The reducednumberof conceptsensuresthat JAM sourcefiles areparticularlyreadable

to non programmers,allowing field expertsaccessto SIMD parallel simulationwithout

having to learn traditional programmingmethods. Codehasbeensuccessfullymoved

betweenplatformswith only minormodifications.

3.1.1 Jam Grammar

input :

neighbordeclaration typedeclaration vardeclaration

usedeclaration initdeclaration ruledeclaration

Creatures

Implementing the CreaturesModel 53

neighbordeclaration:

NEIGHBORHOOD: variable ;

typedeclaration:

TYPES: typelist ;

typelist :

typelist , variable

variable

vardeclaration :

VARS: varlist ;

varlist :

varlist , vartype variable

vartype variable

usedeclaration :

USE: uselist ;

uselist :

uselist , variable

variable

initdeclaration :

INIT : statement

ruledeclaration :

RULE: action

action :

tplist

statement

Creatures

Implementing the CreaturesModel 54

tplist :

expression : action tplist

expression : action !: action tplist

statement :

expression ;

statementlist

;

statementlist :

statement statementlist

statement

expression :

variable

constant

function (expression)

function (variable ... variable)

function (expression) (number)

movement

fnumber

number

(expression)

expression * expression

expression / expression

expression % expression

expression + expression

expression - expression

expression & expression

expression | expression

expression == expression

expression expression

expression expression

variable = expression

fnumber :

number . number

Creatures

Implementing the CreaturesModel 55

number :

digit

number digit

digit :

0 9

constant :

random

type

true

function :

cansee

alert

birth

become

iam

movement :

A Z movement

movement

variable :

a z variable

variable

vartype :

int

float

3.2 A SequentialImplementation

The systemhasbeenimplementedon a NeXT workstation[49] in Objective C[11]. The

interactivesimulator(CINC)usesaNeXTStepinterface[24] to takeinputfromtheuser, and

displaytheresultsin aflexible fashion.This is shown in figure3.2. A commandline based

Creatures

Implementing the CreaturesModel 56

Zoom

Creature
View

Stop/Start

Speed

Single
Step

Number of
Creatures in
Population

Number of
Generations
Since Last
Reset

Figure3.2: TheNeXTStepFrontEnd

Creatures

Implementing the CreaturesModel 57

simulator(cinb) usesthesamecorecode,but doesnot implementtheinteractive facilities.

Its performanceis significantlybetter.

The NeXTStepimplementationis the most complete,and the most flexible of all the

currentCreaturessystems.Rulesmaybe loadedinto the simulatorwithout recompiling,

the movementof creaturesis displayedgraphically, andsimulationmay be interactively

controlledby theuser. This makesit anidealplatformfor refiningsimulationswith small

numbersof creatures(100). The rapid feedbackprovided may be usedto refine the

interactionsbetweentypesof creatures.Oncethe rule is suitablydevelopedthe number

of creaturesmay be increased.At a certainpopulationsize (10000dependingupon

the applicationand the usersexpectations)the performanceof this simulatorbecomes

impracticallyslow, andtherulemaybetransferredto a largermachine.

Thissectiondescribesthedevelopmentof theserialsimulatorwith particularemphasison

the techniqueswhich allow it to provide suchflexibility , andthe scalabilityissueswhich

will becomemoreimportantasparallelimplementationsareconsidered.

3.2.1 A Naive Implementation

Cincandcinboperateby havingacentralcontrollerobjectwhichholdsa“List” of creatures

representingthecurrentgeneration.Whenthis receivesa “step” messageit takesthefirst

creaturefrom thelist, andcompilesanew list, by transferringall creatureswhicharein that

creatureslocation. Fromthis the“cansee”arrayfor that locationis evaluated,andpassed

to eachcreaturein thenew list aspart of their stepmethod. In additiontwo further lists

arepassedto thecreature— onerepresentsthenext generation,andall new creaturesare

placedinto this list. Theotherlist is thegraveyardlist, andis usedto collectall creatures

thatareno longerrequiredsothey maybedisposedof andtheirmemoryreclaimed.

This is repeateduntil the generationlist is empty. Garbagecollectionis thenperformed,

andthecontroller’sstepmethodterminates.In Cinc,thecreaturesarealsosentadrawSelf

message,allowing themto draw themselveson thescreen.

Objective C provedto bea particularlyeffective tool for theimplementationof Creatures.

By representingeachcreatureasanobject[26], thecreaturestate,andrule definitionmay

easilybe incorporatedinto the Classsystem. A genericCreatureclassprovidesa basic

drawing method,the essentialcreatureparameters(type andposition),anda default step

actionof doing nothing. Subclassingof the Creatureclassmay be usedto redefinethe

stepactionto introducethebehaviour requiredfor a specificsimulation. Thesubclassof

Creatures

Implementing the CreaturesModel 58

creaturemayalsoeasilyincorporateextra instancevariables.Theinitial stateof a creature

(0) is codedinto the“init” method,which is executedwheneveranobjectis created.For

morecomplex simulationsotheractionsmaybeoverwritten,redefiningthedefaultconcepts

of space,thegraphicalappearanceof acreature,andreplacingthedefaultfile handingcode

to loadandsave creaturesin variousformats.

In additionto thebasicobjectiveC functionality, NeXTStepprovidesfunctionsto dynami-

cally loadClassesin a simplefashion.This allows new rulesto beloadedinto analready

runningsimulator.

3.2.2 A ScalableImplementation Strategy

The performance(measuredin creaturestepsper second— CPS)of the non-interactive

system1 for a rangeof populationsizesis shown in figure 3.3. The interactive system

performsat approximatelyone fifth of this speed. While the “naive” implementation

provedusefulfor developingrulesby allowing smallscalebehaviour to beexamined,the

performancedegradesrapidly asthe populationincreases.During the stepoperationthe

locationof everycreatureiscomparedwith everyothercreature[12] toproducethe“cansee”

arrays. The time taken to performthis action(referredto asmapping)is approximately

proportionalto the squareof the populationsize. Thoughasfew as 1 comparisons

mayberequiredto mapthesystem,theworstcaseof 1
2 2 comparisonsis more

likely to apply.

As thepopulationsizeincreasesmappingwill inevitablycometodominatetheperformance

of thesystem,dwarfingthe time requiredto evaluatethe transitionfunction. Thesystem

mustbemappedonceateachtimestep.Thetime takento performthismappingis 2 ,

andhenceperformancemeasuredin generationspersecondfallsawayas1 2. Howeverat

eachtimestep creaturesareprocessed.Themappingtimepercreature is therefore .

Themeasureof systemperformancethathasbeenusedin this thesisis “CreaturesSteps

PerSecond”(CPS),whichfor thenaiveimplementationis proportionalto 1 asshown in

figure3.3.

In order to avoid this loss in performanceas populationincreases,stepsmust be taken

to improve the efficiency of the mappingoperation[6][44]. Direct useof locality in the

implementationwouldintroduceundesirablefeatures,similar to thosefoundin cellularau-

tomata:emptylocationswith spareresourceswhile otherlocationscontainmany creatures;

1TheNeXT usedfor theseperformancefigurescontaineda25MHz68040,benchmarkperformancearound15

Mips

Creatures

Implementing the CreaturesModel 59

Creatures Per Generation
64 128 256 512 1024 2048 4096

C
reatures P

er S
econd

1

10

100

1000

10000

100000

Naive Bucketed Dynamic bucketing

Figure3.3: NeXT Performance

Creatures

Implementing the CreaturesModel 60

the increasedcalculationrequiredwhencreaturesmeetleadingto poor loadbalancingof

realwork. Insteada systemwasdevelopedwhichmakesuseof a hashingfunctionto split

thepopulationinto anumberof smallersub-populations,eachof whichmaybemappedfar

morequickly. If thepopulationis dividedin two, theneachhalf maybemappedfour times

asquickly (dueto the 2 dependanceof themappingoperation).Thereareof coursenow

two populationsto beconsidered,soperformancewouldbeincreasedby a factorof two.

In dividing thepopulationit is necessaryto ensurethatall creaturesatasinglelocationare

collectedinto thesamepartition(whichshallbereferredtoasabucket,duetosimilaritywith

hashedfilesin databasesystems).Howeverby makinguseof aneffectivehashingfunction,

clustersof creaturesin neighboringlocationsmaybedistributedto differentbuckets. By

this methodseveral locations(or in fact infinite locationsfor an infinite space)may be

mappedto thesamebucket,reducingthelikelihoodthatabucketmaybeempty.

A tradeoff mustbe madeasto the bucket size,too small a bucket will tendtowardsthe

problemsof aCA (onebucketmaybeoverworked,while othersmaybeempty).Too large

abucketsizewill resultin aslowersystem.Theuseof hashingandbucketsallowsasystem

to becreatedcapableof steppingcreatureswith atimecomplexity of 2 , where is the

numberof buckets. By increasing in line with populationsize,a mappingperformance

inverselyproportionalto may be obtained(and hencea constantperformancewhen

measuredin CPS).

Themajordisadvantageof thisapproachis thatwhena creaturemovesin spaceit mustbe

moved from onebucket to the bucket appropriateto its new location. In a simpleserial

implementationthis may not be a problem(in fact the simpleapproachof rehashingall

creaturesateverytimestepprovesto beeffective— asall creaturesarein thesameaddress

spacethe costof hashingis insignificant). However this will be inefficient in a parallel

implementation,asbucketsarelikely to be held on separateprocessors,andhencelarge

amountsof datamustbe copiedbetweennodes.Despitethis apparentproblem,thenew

workloadis proportionalto thenumberof creaturesmoving (aseachtaskis independent),

andhenceperformanceis guaranteedto bebetterthanthenaive implementationfor large

populations(2 for large evenif).

An additionalproblemconcernsthedistributionof creaturesthroughoutthespace.If alarge

numberof creaturesoccupy thesamelocation,thenthey shouldall behashedinto thesame

bucket. However the capacityof a bucket mustbe necessarilylimited. This particularly

appliesin parallel implementationswhereresourcessuchasmemoryare local to single

nodeandhencemustbe tied to a single(or small numberof) buckets. Thougha serial

Creatures

Implementing the CreaturesModel 61

implementationalsohaslimited resources,theseresourcesmaybedynamicallyallocatedto

bucketsasthey areneeded.A parallelimplementationis likely to requireastaticallocation

andhence,thoughtheremaybesufficient resourceson themachineasa wholeto perform

anoperation,a particularbucket mayoverflow. Thesimulatormustberun with sufficient

spaceto ensurethatbucketsareunlikely to overflow. This limitation is analysedin greater

depthin thefollowing section.

Theabove problemsdo not applywhenusinga singleprocessorworkstationarchitecture

(particularlyif virtual memoryis available),anddramaticimprovementsin performance

may be obtained. The stepmethodof the controller object was modified to hashthe

populationinto a numberof bucketsprior to the steppingoperationasdescribedfor the

naivesystem.Usingafixednumberof bucketsallowsgoodperformancetobemaintainedas

thepopulationsizeincreases(seefigure3.3)until thecomputationtimerequiredtomapeach

bucketbecomesgreaterthatthetimerequiredtostepthebucket. Asthepopulationincreases

abovethis level (around1000for thecurrentimplementation)themappingoperationagain

dominatesandan1 CPSperformancecurve is evident,thoughwith betterperformance

thanthe“naive” implementation.

In asimpleserialimplementationthenumberof bucketsusedmaybevarieddynamicallyto

ensurethatthenumberof creaturesoneachbucketis slightly smallerthanthesizeatwhich

mappingbecomesasignificantoverhead.Thecomputationaloverheadin this is small,and

allows performanceto bemaintainedfor arbitrarily largepopulations(providedhardware

limitationsarenotexceeded).

3.2.3 A Statistical Analysisof Bucketing

Despitetheperformancebenefitsthatbucketingoffers,whenimplementedon a platform

wheretheresourcesof eachbucketarelimited, theproblemof bucketoverflow reducesthe

applicabilityof theapproach.Thesystemwasthereforeanalysed,to provide a theoretical

insight into the overflow problem. Much of this analysisis commonto the theory of

hashfiles usedin databasesystems[7]. Similar resultsalsoexist in the field of queueing

theory[27][10], whichcouldbeappliedto yield a morecompleteanalysis.

Considera simulatorcontaining buckets, eachcapableof holding creatures.The

maximumpopulationsize is therefore . However in practise,therewill be a

smallernumberof creatures .

It mustbeassumedthatthedistributionof creaturesthroughspaceis uniformandindepen-

Creatures

Implementing the CreaturesModel 62

dentof othercreaturesandthehashfunctionusedtoassignlocationstobucketis fair. While

this assumptionis unlikely to bereliablefor real simulations,it is necessaryfor virtually

any analysis. In practisethe distribution may be far betteror far worsethana random

distribution dependingupontheapplication.However suchdistributionsarespecificto a

givensimulation.No matterhow complex theanalysisit wouldstill bepossibleto produce

a “badly behaved” simulationwhich exceedsthe capacityof a well designedsimulator.

All thatcanpracticallybederivedis thetypical behaviour of thesystem.Thoughrandom

distributionis anunreliableassumptionto make,its generalapplicability, andmathematical

simplicity make it theonly viableoption.

Indi vidual Buckets

A creaturehasa probabilityof beingin any givenbucket 1 , independentof other

creatures,and buckets. When many creaturesare placedin the system,the numberof

creaturesin a particularbucket is thereforedescribedby a binomialdistribution[47]. The

meannumberof creaturesin a givenbucket

(3.1)

Thevarianceof thenumberof creaturesin a givenbucket is

2 1 1 1 2 (3.2)

Thesemay be usedin a normal approximationto the binomial distribution. Suchan

approximationwouldbecomenecessaryif calculationswereto beperformedonvery large

systems.Howeveranaccuratebinomialdescriptionhassofarprovedtractable.

Theprobabilityof therebeingexactly creaturesin agivenbucket is

1 1 1 (3.3)

Theprobabilityof thebucketnotoverflowing is therefore

0

1 1 1 (3.4)

Multiple Buckets,and multiple steps

In orderfor the simulationto succeed(for a singlestep)no singlebucket may overflow.

Theprobabilityof this is

(3.5)

Creatures

Implementing the CreaturesModel 63

Giventheprobabilityof thesystemsucceedingat a givenstep,theprobabilityof reaching

time is

(3.6)

It shouldbe notedthat this assumescompleteindependencebetweenconsecutive steps.

This is blatantlyuntrue,asthedistributionof creaturesin onestepis stronglycorrelatedto

thepreviousstep— particularlyif theamountof movementis small. If nocreaturesmove

thentheprobabilityof overflow is zero. Only if a largenumberof creaturesmoveusinga

largeneighborhoodwill thestepsbetruly uncorrelated.Suchanalysismayonly bemade

on a caseby casebasis,asit requiresdetailedconsiderationof thehashingfunctionused,

the initial populationdistribution,andthetransitionfunction. Evenin suchspecificcases

theproblemmaybeintractabledueto thecomputationallycompletenatureof thesystem

beingconsidered.Assumingindependencebetweentimestepsgivesthemostpessimistic

approximationto thevalueof P(t). Usingsuchavalueensuresthatthesimulationisunlikely

to fail if thestatisticsindicateit shouldsucceed.

Births, Deathsand Movements

The derivation so far hasassumedthat the numberof creaturesis constant,andthat the

movementof creaturesbetweenbucketshaslittle effect on thesimulator(eachstepbeing

independent).Theinclusionof Births andDeathsto thesystemmeansthat thenumberof

creaturesis no longerconstant.It alsoallows largenumbersof creaturesto be suddenly

placedin a single location. This clearly invalidatesthe model previously developed.

Someform of statisticalindependencemustagainbe assumed:Provided that births are

distributedthroughspacein a sufficiently randomway, an upperlimit for the population

maybeestimated,andtheprobabilityof successmaybederivedbasedon this population

size. A moredetailedanalysisis not possiblewithout consideringa specificapplication,

andhenceapessimisticestimateis againadopted.

Whena creatureis movedit musttemporarilyexist in onebucket,while at thesametime

finding an emptylocationin its destinationbucket. It thereforeeffectively occupiestwo

locations. The currentsimulatorsonly move onebucket of creaturesat a time, freeing

thesourcelocationsfor useby creaturesmoving from otherbuckets.Makingassumptions

of statisticalindependenceashasbeendonepreviously, movementmay thereforebe in-

corporatedinto the modelof simulatorbehaviour by increasingthe populationsize to

1 where is theprobabilitythatacreaturewill moveatany given

step(whichmaybepessimisticallybesetto 1).

Creatures

Implementing the CreaturesModel 64

Numerical Examples

Eachof theimplementationsof Creatureswasbenchmarkedover500timesteps,with every

creaturemoving ateverystep.Thiswasalsousedfor thetheoreticalresultsderivedbelow.

For the basiccaseof 64 and 64 the graphshown in figure3.4 wasproduced.

Increasing , the numberof buckets,haslittle effect on the shapeof the graph— the

breakpointis alwaysa little over 50%full. In databasetermsit is recognisedthat it is the

ratioof the and parametersratherthantheirabsolutevalueswhichdetermineoverflow

performance.

If , thebucketsize,is increasedthenthebreakpointalsoincreases(relativeto theabsolute

maximumpopulationsize), asshown in figures3.5and3.6. Fromanoverflow pointof

view it is clearlydesirablethatbucketsareaslargeaspossible.Howeverlargebucketswill

give poorperformancefor themappingoperation,andmaynot bepracticalon a parallel

architecturewhereresourcesonaparticularnode(or collectionof nodes)maybelimited.

Consideringthespecialcaseof a singlebucket (asin thenaive serialimplementation)the

probabilityof finding creaturesin a bucket is zerofor all valuesof except . For

valuesof lessthan theprobabilityof succeedingfor a singletimestep 0. For

the probability of succeedingis 1. Although bucket overflow still appliesin the

trivial casethesystemmustbecompletelyfull beforeanerroroccurs.

For a bucket sizeof 64, thestatisticsshow thatit shouldbepossibleto operatea simulator

thatis approximatelyhalf full (figure3.4). Testingarealsystemof thissizeshowedthat(in

the idealisedbenchmarksituation)thesimulationwasalwayssuccessfulat 25%capacity,

butwouldalwaysfail whenthepopulationwasincreasedto50%(for thoseimplementations

wherebucket sizehasanabsolutefixedlimit). Giventhenatureof theassumptionsmade

regardingindependenceof theelements,thismaybeviewedasagoodcorrelation.

3.3 Creatureson the MasPar MP1

A creaturessimulatorwasdevelopedin MPL[45] to run on a MasPar MP1104machine.

Thishas4096nodesarrangedin asquaregrid with localconnections,plusadditionalglobal

routinghardware.Two implementationsweredeveloped— onewhichplacedonecreature

on eachnode,a secondwhich usedthe bucketing techniquesdescribedpreviously. The

implementationdemonstratesthestrengthsandweaknessesof thebucketingapproachwhen

Creatures

Implementing the CreaturesModel 65

1000 2000 3000 4000

0.2

0.4

0.6

0.8

1

Population Size

Probability
of Success

Figure3.4: Probabilityof successfor 64and 64

Population Size

Probability
of Success

2000 4000 6000 8000

0.2

0.4

0.6

0.8

1

Figure3.5: Probabilityof successfor 64and 128

Population Size

Probability
of Success

2500 5000 7500 10000 12500 15000

0.2

0.4

0.6

0.8

1

Figure3.6: Probabilityof successfor 64and 256

Creatures

Implementing the CreaturesModel 66

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

T X Y

CanSee

Figure3.7: BroadcastingtheCreatureMap

appliedin a massively parallelsystemof this type.

3.3.1 A Naive Implementation

Given a large numberof processors,eachcreaturemay be assignedits own individual

processor. The type andlocationof eachcreatureis broadcastandincorporatedinto the

world view of everyothercreature(figure3.7). Thecreaturesarethenstepped,andasearch

for freenodesis performedby thoseprocessorswhicharerequiredto produceoffspring.

Performancesof 15000creaturestepspersecond(CPS)wererecordedwhenthemachine

wasfully populated,with asinglecreatureoneachof the4096nodes(figure3.8). For pop-

ulationsof this size,a naive (non-bucketed)serialimplementationon a NeXT workstation

couldonly achieve48CPS.Thisspeedincreaseof approximately300timesis in agreement

Creatures

Implementing the CreaturesModel 67

Creatures Per Generation

64 128 256 512 1024 2048 4096 8192 16384

C
re

at
ur

es
 P

er
 S

ec
on

d

1

10

100

1000

10000

100000

NeXT MasPar MasPar2 MasPar4 MasPar8 Fixed Step Time

Figure3.8: MasPar Mp-1 Performance

with theclaimedperformancefiguresfor theMP1104,andNeXTstations(6400and16mips

respectively — a ratio of 400). While the NeXT implementationwasnot optimisedfor

speed,theresultsshow thatthealgorithmis extractingagoodpercentageof thetheoretical

peakperformancefrom the MasPar architecture.For small populations,the overheadof

supportinga largenumberof processorsresultsin poorerperformancethanthatavailable

from a serialmachine— thereareinsufficientcreaturesto utilize theavailableprocessors.

Steptime is in factalmostindependentof populationsize(the“fix edtimestep”line shows

theCPSperformancerequiredto giveaconstanttimepergeneration).

For many applicationseven4000creaturesmaybe insufficient to producereliablestatis-

tically valid behaviour. However oncethe numberof creaturesexceedsthe numberof

processorstheperformanceof evena massively parallelsystembeginsto degraderapidly.

This is shown by thelinesMasPar2,4,and8 on thegraph(figure3.8),which representthe

systemsperformancewith eachnodeholding2, 4, and8 creaturesrespectively. In addition

to theoverheadof virtualisation,the time taken to calculateonegenerationsincreasesby

a factorof four for every doublingof populationsizedueto the 2 effect of themapping

operation— theCPSperformancefallsproportionallyto .

Creatures

Implementing the CreaturesModel 68

3.3.2 Bucketing on the MasPar

As previously discussed,theapplicationof “bucketing” improvestheperformanceof the

mappingoperation. However due to the MasPar’s architecturecertainconstraintswere

placedon how buckets could be configured. The 4096 nodemachineis arrangedas a

64 64square.Thesystemwasthereforebuilt to containsixty four bucketsof up to sixty

four creatures.Thehashingfunctionusedwasof theform . Specifically

9 asthis resultsin 7 stepsin the directionplacingthe creatureonebucket down

from its initial location,ensuringthat a line of creatureseitherhorizontallyor vertically

(a commondegeneratecase)would efficiently utilize all processors.Virtual processor

spacewasimplementedby increasingthe numberof buckets. This maintainsa constant

performance(measuredin creaturespersecond)for anincreasingpopulationsize.

Increasingthebucketsizewasnot feasibledueto thenatureof theMasPar architecture—

themappingoperationwasperformedby spreadinginformationaboutcreaturetypearound

the rows of the machine. Initially this was implementedby eachnodeexaminingeach

othernodewithin the bucket. However the communicationsoverheadproved high due

to thedistancebeingcovered. Insteadeachnodemakesa copy of its type, thenreplaces

thatcopy with thecopy heldin thenodeto its right (andassimilatesthenew datainto the

creaturesworld view). This resultsin thecopieddata’s rotationroundeachbucket with a

minimalcommunicationsoverhead(asshown in figure3.9). Introducingvirtual nodesinto

thisoperationwouldhavebeendifficult, astheMPL languagemakesnoprovisionfor such

structures— the codewould have to explicitly dealwith the multiplexednodes,andthe

inter/intra-nodecommunicationsrequired.Weresuchasystemto beimplemented,thestep

timewouldincreaseby afactorof four for everydoublingin size(dueto the 2 complexity

of mappingwithin a singlebucket). However the problemof bucket overflow would be

eased,allowing thesimulatorto berunat closerto its maximumcapacity.

Statisticalanalysisof bucketoverflow (section3.2.3)suggestedthatrunningthesimulator

at approximatelyfifty percentcapacitywaslikely to causea failure during the courseof

the 500 stepsthat wereusedfor benchmarking.This proved to be the case— provided

that a populationof onequarterthe simulatorsizewasnot exceeded,no overflows were

obtained.Theperformanceof thebucketingsystemisshown in figure3.10.Thisshowsthat

around10,000creaturestepspersecondmaybemaintainedfor largepopulations.Theloss

in performancedueto increasedsimulatorsizewhenthepopulationis small is negligible

comparedto thelossobtainedby thenaivemethod.

Creatures

Implementing the CreaturesModel 69

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Copy
T X Y

CanSee

Figure3.9: GeneratingtheCreatureMapusingbuckets

Creatures

Implementing the CreaturesModel 70

Creatures Per Generation

64 128 256 512 1024 2048 4096 8192 16384

C
re

at
ur

es
 P

er
 S

ec
on

d

1

10

100

1000

10000

100000

BucketMP MultiBucket2 MultiBucket4 MultiBucket8 MultiBucket16 NeXT bucketed

Figure3.10: BucketedPerformance

3.3.3 Conclusionsabout the MasPar System

Theperformanceof thenaive methodobtainsgoodspeedup comparedto thenaive serial

implementation.Howeverthisapproachis necessarilylimited by the 2 mappingproblem.

Theperformanceof thebucketedapproachis unfortunatelylittle betterthanthatobtained

by serialimplementations.Thiscanbeexplainedby two factors:

DynamicBucketing: A serialsystemis ableto determinethe optimumnumberof

bucketsandbucket sizeat run time, andchangethis dynamicallyasthesimulation

progresses.In additionto ensuringgoodperformanceit eliminatestheproblemsof

overflow.

Movement:Profiling of theBucketingcoderevealedthatapproximatelyninetyfive

percentof the simulation time is taken up by a single line of code — the line

responsiblefor themovementof creaturesbetweenbuckets.Whena creaturemoves

its new locationis invariably, on anotherprocessor, andhencedatamustbecopied

betweennodes.Thisproblemwill befurtherconsidered,andtackledlaterin section

3.5. For thepurposesof benchmarkingaworstcaseproblemwaspickedwhereevery

creaturemovesto anew locationateverytimestep.Hencetheperformancefigureis

Creatures

Implementing the CreaturesModel 71

somewhatpessimistic,andis likely to beexceededfor realsimulations.

The MasPar implementationfailed to deliver the full performancethat the naive system

indicatedshouldbe possible,and is somewhat difficult to use(the correctbucket size

for a problemmust be carefully chosen). However it doesdemonstratethat Creatures

codewritten in Jammaybe retargettedto a new backendwith little modification. Most

importantlytheimplementationdemonstratesthatthoughbucketingsolvestheproblemsof

mapping,it createsa numberof problemsof its own whenimplementedon architectures

of this type. Theimplementationon theMasParprovidesinsightinto how amoreeffective

machinemaybebuilt.

3.4 Creatureson the Thinking MachinesCM2

Following thecompletionof theMasParimplementationthebucketedMasParimplementa-

tionwasportedto theConnectionMachine[29][38] C*[21] environment.Suchaportwould

demonstratethatthetechniquesdevelopedto runCreatureson theMasParwereapplicable

in a rangeof situations,andrevealtherelative strengthsandweaknessesof thealternative

underlyingmachinearchitectures.In addition,accessto theMP1104waslimited to ashort

time period— theCM2 provideda platformwhich couldbereturnedto, allowing further

experimentsto beperformedshouldtheneedarise.

Portingthesimulatorprovedto bearelativelyminoroperationrequiringaminimalnumber

of changesotherthanlexical translationto useC* ratherthanMPL keywords. C*’s more

limitedcontrolstructuresdidpresentsomeminorproblems,requiringadditionaltestswhich

mayhavehadsomeimpactonefficiency.

The ConnectionMachineis physicallya hyper-cubebut the programmer’s model(when

using C*) is an array of variabledimension. Communicationis by wormholerouting

throughthis . Thereis noglobalroutinghardwareasin theMasParsystem.C*’s

provision for virtual processors(which waslackingin theversionof MPL availableat the

time)alloweda morecompleteexplorationof thebucketingparameters.

Theresultingperformanceis shown in figure3.11. Theseresultsindicateanexceedingly

poorperformanceonamachinethatis theoreticallyfarmorepowerful thantheMP1. Once

againthepoor resultsmaybeattributedto communicationsoverhead.Themovementof

Creaturesbetweenbuckets may result in the transferof databetweennodeswhich are

remotein thephysicalarchitecture(thoughthis is difficult to determine,asthebasehyper-

Creatures

Implementing the CreaturesModel 72

Creatures Per Generation

64 128 256 512 1024 2048 4096 8192 16384

C
re

at
ur

es
 P

er
 S

ec
on

d

1

10

100

1000

10000

NeXT CM2 B=64 K=128 CM2 B=64 K=256 CM2 B=64 K=512

Figure3.11: CM2 Performance

cubeis totally obscuredby theC* programmingparadigm).Thesetransfersareespecially

expensive given the local communicationssystemusedby theCM. While thesetransfers

arealsoexpensiveontheMasPar, theprovisionof hardwarededicatedto longrangerouting

relievestheproblemsomewhat.

In order to verify that the communicationoverheadof creaturemovementis indeedthe

bottleneck,the CM2 was benchmarked againthis time choosingthe optimum scenario

whereevery creatureremainsin thesamelocation. Theresultsof this areshown in figure

3.12. This shows a dramaticimprovementin performance.Sucha systemoperatesat up

to onehundredtimesthe speedof the previousexample. Clearly stepsmustbe taken to

optimisethemovementof Creatures.

3.5 Spiralling — Reducingthe MovementProblem

Bucketing is effective in reducingthe mappingoverhead,but it introducesthe new (sig-

nificant) overheadof processmigration. However, by consideringthe bucketsasa long

line, the arraycanbe wrappedaroundinto a 3D spiral suchthat (for the hashfunction

) the th bucket is directly above thefirst, andsoon (figure3.13). The

lastbucket is connectedbackto thefirst to form a toroidalstructure.This ensuresthatthe

Creatures

Implementing the CreaturesModel 73

Creatures Per Generation
64 128 256 512 1024 2048 4096 8192 16384

C
re

at
ur

es
 P

er
 S

ec
on

d

1

10

100

1000

10000

100000

1000000

NeXT CM2 B=64 K=128 CM2 B=64 K=256 CM2 B=64 K=512

Figure3.12: CM2 StationaryPerformance

Creatures

Implementing the CreaturesModel 74

1 2 3 . . . k0

1

2

3.

.

. k

0

.

.

..

.

-1

-2

Figure3.13: Wrappingbucketsinto aSpiral

Creatures

Implementing the CreaturesModel 75

smallchangesof and involvedin themigrationof processesresultin a shortcommu-

nicationsdistancebetweenadjacentbuckets,while still breakingthe creaturesdown into

easilymappedsub-populations.Loadbalancingfor degenerate,onedimensionalproblems

is alsomaintained.

Thespiral canbeviewedasanedgeconnectedmesh,wheretheedges,ratherthanbeing

connectedback to the samerow, are connectedback to a row which is offset (where

the hashingexampleis a specialcase: offset=1,previously proposedfor usein systolic

computationsystems[56]). An offsetof any sizecouldbeappliedbothto rowsandcolumns.

However in doingsospecialattentionmustbepayedto theconnectionof nodesat thetop

right handcornerof thegrid, wherethetwo offsetsinteract.Theresultof this interactionis

not obvious,andis bestillustratedby figure3.14. Whena shift of distance is appliedin

eachdirection,a gapappearsin thegrid of size 2. Thisgapmustbefilled with additional

bucketsto regaina pseudoinfinite, uniformsurfacesimilar to thatof a traditionaltorus.

3.5.1 DesigningA DoubleTwistedTorus

Given that the twistedtorusarchitecturereducesthe communicationsoverheadproduced

by thesimplehashingapproach,it is necessaryto considerwhatvaluesof (thegrid size),

and (theoffset)areeffective. Thetopologyis scalable,so theabsolutesizeof thearray

will belimited only by practicalconsiderations.Howeverfor afixednumberof processors

a numberof shapescouldbebuild, eachwith differingperformance.By carefulselection

of and amoreefficientmachinemaybebuilt.

Without a priori knowledgeof the problemsto be tackledby the proposedmachine,few

assumptionscanbemadeaboutthe loadpatternthatwill beplacedon thegrid. However

theperformanceof thesystemis highly dependenton theloaduponit. For any topologyit

wouldbepossibleto find loadswhichmapparticularlybadly. A well designedgrid will be

built suchthatloadswhichmapbadlyareunlikely to occur, while commonloadsmapwell.

It mustbe assumedthat on averageloadswill be symmetrical,asfor any load that may

beappliedthereis anequallylikely loadwherethe and axeshave beeninterchanged.

Thereforeonly gridssuchthat and will beconsidered.

When implementingbucketing on the MasPar a desirablefeatureof the hashfunction

selectedwasthatmovementin eitherthe or directionpassthroughevery nodebefore

returningto thestartingpoint. This is particularlyimportant,asone-dimensionalautomata

(ornear1D — whereonedimensionfarexceedstheother)areacommonspecialcase.This

Creatures

Implementing the CreaturesModel 76

Grid Image Grid Image

Grid Image Grid Image

Grid Image

Grid Image

Grid Image

Grid Image

No Offset Vertical Offset

Grid Image Grid Image

Grid Image Grid Image

Horizontal Offset

Grid Image

Grid Image

Grid Image

Grid Image

H+V Offset

X

Figure3.14: Filling theGap

Creatures

Implementing the CreaturesModel 77

conditionis satisfiedwhen and arerelatively prime: LCM (or alternatively

GCD 1 : 1 is alwaysvalid)[52]. Givenapairof values whichsatisfy

this condition will alsobesuitable.Offsetsmaythereforebecategorisedas

large(2) or small(2).

If thepreviousargumentis generalisedto avoid clasheswhen(for example)loadsof width

2 areapplied,thenit canbeseenthatthehashingmodel(where 1) is potentiallypoor,

asthe locationk,0 is equivalentto 0,1. By increasingtheoffset,clashesof this form are

likely to bereduced.It is thereforeadvisableto eliminatemesheswith 1 or 1.

Any node in anetwork hasaneccentricity — themaximumdistance from

any vertex to in . The radiusanddiameterof arerespectively theminimumand

maximumeccentricityamongthe verticesof [52]. For a uniform surfacesuchas the

torusor twistedtorusall nodesareequivalent,andhencetheradiusof thegraphis equal

to thediameter. For any network of processorsa low valuefor thediameter is desirable

asit representstheworst casecommunicationsoverhead.For a simple by meshthis

distanceis 2 andfor a toroidalmeshthediameteris approximately [53]. Any twisted

mesh alsohasa diameterof . This is independentof . If thenumberof

processorswill be2 2. Althoughthediameterof an<n,n>twistedtorusis thesameasan

ordinary by torusit containstwice thenumberof processors.

This increasein densityis achievedbe reducingthe redundancy, ascanbeseenin figure

3.15. In astandardtorustherearethreesetsof pathsfrom any pointto any otherof distance

lessthan . Whenanoffset is presentthe redundancy is reduced,until for thefinal case

thereis only onesetof pathsto any point (the remainingredundancy is necessary

to retaina regularsurface— it will alwaysbepossibleto travel eastthennorth,or north

theneast).A similar resulthasbeenusedto reducethemeancommunicationsdistancein

ahypercube[1].

Whentheoffsetis increasedthemeanroutingdistancebetweenpairsof pointson thegrid

increases.Whenthe offset is zerothemeandistancebetweenpairsof pointson the grid

is 2. However astheoffset is increasedto themeandistancetendsto 2 3. Sucha

grid contains2 2 processors.A regulartorusof 2 2 processorswouldhaveameanrouting

distanceof 2. Themeanroutingdistancefor a twistedtorusis thereforelessthanthe

meanroutingdistancefor a regulartorusof equivalentsize.

The specialcase representsthe mostcompactsystem,thoughit fails to meetthe

criteriapreviously setout for goodmeshsizes.Largervaluesof which do satisfythose

guidelinesshouldthereforebechosenin preferenceto smallervalues.

Creatures

Implementing the CreaturesModel 78

o=0

o=n/2

o=3n/4

o=n

Figure3.15: Thediameterof TwistedMeshes

Creatures

Implementing the CreaturesModel 79

Grid Size: SmallOffset: 2 LargeOffset: 2 Numberof Nodes

5 2 3 29,34

7 2,3 4,5 53,58,65,74

8 3 5 73,89

9 2,4 5,7 5,97,106,130

10 3, 7 109,149

Table3.1: SomeViableMachinesizes

Valuesof greaterthan canbeconstructed.However in suchcasestherolesof and

areinterchanged:that is . It is simplestto consideronly casessuch

that is lessthanor equalto , asnosystemsareexcludedby sucha limitation.

In orderthata statisticallyreliabledistribution of loadbetweennodesis achievedtheload

shouldwraparoundthetorusasmany timesaspossible.Thisdemandsthatthetotalnumber

of nodesbekeptreasonablesmall,hencetherestrictionalreadyestablishedaresufficientto

indicatewhichvaluesshouldbeconsideredfor thedevelopmentof atestsystem.A number

of suitablemachinesareshown table3.1.

3.5.2 Load Balancing

By applying the shift found in the twisted torus topology, regular patternswithin loads

arebrokenup. For thepurposesof testingrectangularloads(oneloadunit in eachvirtual

locationwithin a rectangleof a chosensize)wereappliedto twistedandregulartoroidsas

shown in figure 3.16. Suchloadsarewell balancedfor non-twistedgrids only whenthe

sizeof theappliedloadis anexactmultipleof grid size,otherwisetheloadwill have three

distinct regions. This is shown in figure3.17wherea rectangularload(randomlychosen

to be68 by 52) is appliedto an8 by 8 edgeconnectedmesh.Themeanloadpernodeis

55.25,but poorloadbalancingmeansthatnodesmayhaveashigha loadas63or aslow as

48. Thestandarddeviation is 5.356(optimumwouldbe0.433).

By applyinga twist to thetorustheloadis brokenuparoundthesurface,asshow in figure

3.18. With an8 8 grid any offsetof between2 and7 resultsin anoptimumbalancing

for theexampleload. Figure3.17showstheresultsfor 5. Theincreasein thenumber

of nodesresultsin a reductionof themeanloadto 39.7,but now all nodeshave a loadof

either39or 40. Thedeviationin theloadis hencereducedto theoptimumvalueof 0.44—

Creatures

Implementing the CreaturesModel 80

2 1

24

12 9

1216

Figure3.16: Applying a RectangularLoadto aTraditionalGrid

Creatures

Implementing the CreaturesModel 81

<n,o>=<8,0> <n,o>=<8,5>

Load
Load

Figure3.17: Applying a rectangularload

adramaticimprovement.

Thestandarddeviation of the loadwascalculatedfor all rectangularloadsup to forty by

forty, appliedto theeightby eightgrid. Thedifferencebetweenthesevaluesandthebest

possiblestandarddeviation(for thatnumberof processorsandloadunits)is shown in figure

3.19. Ideally this graphwould be theplane 0, asthis would indicatethesystemwas

optimally load balanced.However whenan ordinarytorusis usedthe surfacehasmany

highpeaksrepresentingpoorperformance.Only a few specialcases(wheretheloadis an

exactmultipleof thegrid size)arewell balanced.

An equivalentgraphfor andeightby eightgrid with anoffsetof fiveis shown in figure3.20.

Thesurfacehereis a muchbetterapproximationto 0 indicatinggoodloadbalancing

for almostall loads. The meanload error is 0.15whenthe offset is used,asopposedto

1.16in thesimplecase.Despitethedramaticimprovementin averageperformancethenew

grid doeslack the simpleperfectlybalancedcases,asfound in the perviousexample. If

theshapeof the loadmaybeselectedby theprogrammerin anarbitraryfashionto fit the

shapeof themachinethenthereareanumberof simpleshapeswhichcanbechosenwhich

embedwell in a simpletorus. It is non-trivial to selectsuchperfectshapesfor a twisted

Creatures

Implementing the CreaturesModel 82

Figure3.18: Applying aRectangularLoadto a TwistedGrid

Creatures

Implementing the CreaturesModel 83

40

Load Width

0,0

40
Load
Height

L
o
a
d

I
m
b
a
l
a
n
c
e

Figure3.19: Loadsappliedto an8 grid

Creatures

Implementing the CreaturesModel 84

0
Load Width

0,0

40
Load
Height

L
o
a
d

I
m
b
a
l
a
n
c
e

Figure3.20: Loadsappliedto an8 8 5 5 grid

Creatures

Implementing the CreaturesModel 85

Figure3.21: Two SimilarNetworks

torus.Howeverfor agenericmachinerunningaselectionof generalproblemsof unknown

shapesperformanceshouldbedramaticallyimproved.

Theabove resultshave alsobeendemonstratedwith real loadstakenfrom Creaturessim-

ulations. Geometricstructureswill be poorly mappedonto a traditional mesh,but are

(generally)distributedevenlyaroundtheprocessorarrayby thespiralingtechnique.

3.5.3 Construction and Routing

Sofarspiralshavebeenconsideredasbeingspecifiedby twoparameters— thebasicsize ,

andanoffset . While this is sufficient to specifythecomputationalproperties,it doesnot

completelydescribeaphysicalsystemasreflectionsandrotationsmaybeusedto transform

betweena numberof possibleimplementationsof a singletopology. This canbeseenfor

thetwo dimensionalcasein figure3.21. While thesearesimply mirror imagesandhence

computationallyuninterestingthey will changethe way datamustbe routedaroundthe

system— aparticularlocationin virtual spacewill mapto adifferentlocationin realspace.

Whenthesystemis implementedin two dimensionalspacetheoffsetappliedin eitherthe

X or Y directionmustbenegative (with respectto a conventionalaxis). This is necessary

to prevent the surface overlappingwith itself. While this is simply dealt with when

Creatures

Implementing the CreaturesModel 86

implementingamachinein atwo dimensionalspaceit wasinitially unclearhow thiswould

scaleto higherdimensions.By theapplicationof matrix techniques[61] the twistedtorus

topologymaybedescribedin a fashionmoreappropriateto higherdimensionalsystems.

Theissuesof constructionandroutingmaybeclarifiedbyconsideringanumberof "Origin"

vectors,which maptheorigin of thesurfaceonto itself. For a dimensionalspacethere

will be suchindependentvectorswhich will form a basisfor the space. For the two

dimensionalexamplesin figure3.21thesevectorsare and .

Thesepairsmaybemergedinto a transformationmatrix for eachcase: and

. The placementof the negative offset valuedetermineswhich of the mirror

imageformsis produced.

The matrix in eachcasewould transformthe unit squareinto a parallelogramwith

cornersat theoriginsof thesurface,asshown in figure3.22. Onesuchparallelogrammay

beassociatedwith oneimageof thephysicalcomputationalsurface,andasbothtessellate

to fill space,musthave thesamearea.Eachparallelogrambeganasaunit square,andwas

transformedby thematrix . The determinantof a matrix (in this 2D case)is of course

theareascalefactor. It is additionallyknown thatfor thesurfaceto becontinuousit must

contain 2 2 processors(eachof which maybetakenashaving unit area).Hencethe

determinantof mustbe 2 2. This clarifieswhy a negative offset is requiredin one

direction,asdeterminantsarecalculatedby theevaluationof sub-determinantswhich are

alternatelyaddedandsubtractedfrom thetotal— only by applyingasinglenegativeoffset

will a matrixwith thecorrectdeterminantbeproduced.

More importantlythematrix maybeusedto simplify routing. In orderto communicate

effectively betweenvirtual nodesit is essentialthatthephysicalnodeon which thevirtual

noderesidesbeeasilycalculated2. Givena virtual processor, any integercombinationof

origin vectorsmay be addedor subtracted,andthe mappingto a physicalnoderemains

unaffected. Thephysicalmappingmaybedeterminedby addinga combinationof origin

vectors,suchthat the virtual nodecomesto lie within the physicalsystem. The exact

definitionof which locationis the“real” locationof a nodeis unimportant.It is sufficient

thata uniquelocationfor a nodemaybecalculated.Sucha uniqueaddressmaybesimply

arrived at by defining the physicalsystemto exist within half an origin vector in any

2When implementingCreaturesthis information is only requiredto load positionsinto the system,and to

dumpthemoncesimulationis complete.However thespiraledarchitecturehasotherpotentialapplicationwhere

communicationat adistancemayberequired.

Creatures

Implementing the CreaturesModel 87

Figure3.22: Origin VectorsSpanningSpace

Creatures

Implementing the CreaturesModel 88

directionfrom theorigin (asin figure3.22). Unfortunatelyit is difficult to determineby

simple inspectionthe correctcombinationof vectorswhich mustbe addedto a location

to move it into the physicalspace,as origin vectorsmay be non-orthogonal(in higher

dimensions),andinteractin anon-trivial fashion.

Thematrix mapstheunit (square)vectorsontotheorigin vectors,andhenceits inverse

1 will maporigin vectorsontotheunit square.Oncein this form theorigin vectorsare

easilyseparated,andamappingcloseto thegenuineorigin maytrivially befoundby taking

the fractionalpartof eachcomponent,andthentransformingback(via) to theoriginal

coordinatesystem.

An optimal routingmaybe foundbetweentwo virtual nodesby taking thevirtual offset,

transformingit to theorthogonalspace,andchoosinga new valuefor eachcomponentin

the range1 2 1 2. This is thentransformedbackby . Suchan operationwill

producea new offset from the original locationwhich hashadredundantmovesthrough

imagesof themachineremoved,leaving theshortestpossibleroutebetweenthetwo points.

The 1 matrix may be trivially calculatedfor both specificarchitectures,and for any

requireddimension.For the2D case:

1 2 2 2 2

2 2 2 2

Thismatrix is calculatedoncefor eachmachinetopology. At runtime,two matrixmultipli-

cationsandtwo truncationsarerequiredto find anoptimumpathto thedestinationnode.

Thoughthetechniqueasdescribedrequiredfloatingpointoperations,divisionis alwaysby

thedeterminantof thematrix which is fixedfor any machine.It would thereforebetrivial

to developa fixedpoint implementationwhich requireslesscomputationalresources,and

couldberunefficiently on thesimpleprocessorsfoundin massively parallelsystems.

3.5.4 Higher DimensionalSpirals

Whenmachinesareconstructedin greaterthantwo dimensionalspacethesystembecomes

an -cubewith anadditionalsmaller -cubefixedin thecornerof one“f ace”(the three

dimensionalcaseis shown in figure3.23). As thedimensionof thesystemincreasesthe

“f ace” acquiresmore corners,and the numberof possiblesystems,representedby the

possiblechoicesfor placementof negative offsetsincreases.The threedimensionalcase

Creatures

Implementing the CreaturesModel 89

Figure3.23: A ThreeDimensionalTwistedTorus

Creatures

Implementing the CreaturesModel 90

offersfour uniquevaluesof whichproducetherequireddeterminant 3 3:

0

0

0

0

0

0

0

0

0

0

0

0

In fact thereareothersproducedby consideringtrivial transformationsof this matrix, but

theseproduceidenticalshapes.In generalthereare2 1 interestingvaluesof .

Thesearebestproducedby placing on the leadingdiagonal,thenplacing the value

immediatelybelow. Thisis thesimplestmethodof arrivingataconfigurationwhichsatisfies

theconditions:

thatall origin vectorshavean componentandan component.

thatthe componentof a vectoris orthogonalto the component.

thatno two componentsareparallel.

thatno two componentsareparallel.

Thesespecifythateachimageof thearrayshallhaveasingleadjacentimageoneach“f ace”

thatis offsetfrom thatface.Thedirectionof theoffsetsmustthenbeadjustedsothatnone

of theimagesoverlap. It hasbeenestablishedthatthedeterminantof thematrixshouldbe

the“volume” of theshape.If the imagesoverlapthey will besharingvolume,andhence

thedeterminantwill be lessthan 2 2. It is shown in the following sectionthat for all

dimensionsthenumberof positive offsetsmustbeoddto satisfythis condition. Thereare

2 combinationsof positiveandnegativevalues,half of whichwill haveanoddnumberof

positiveoffsets,hence2 2 2 1 interestingvaluesof . For 2 onenegativeoffset

is required, 3 requireseitherzeroor two negativeoffsets.Fromtheseamatrixmaybe

pickedarbitarilly, andusedto constructa machine.

Considertheexample 4:

Creatures

Implementing the CreaturesModel 91

Constructadiagonalmatrixof dimension with thevalue ontheleadingdiagonal:

0 0 0

0 0 0

0 0 0

0 0 0

Placethevalue directlyunderneatheach

0 0

0 0

0 0

0 0

Evaluatethedeterminant:

0 0

0 0

0 0

0 0

4 4

If thisdoesnotequal reversethesignof any one

0 0

0 0

0 0

0 0

4 4

Evaluatetheinverse 1

0 0

0 0

0 0

0 0

1

3 3 2 2

2 3 3 2

2 2 3 3

3 2 2 3

4 4

Thephysicallayout resultingfrom a particularlayout is not alwaysclear, particularlyfor

higherdimensions.Thebestmethodof constructingasystemfrom thematrixspecification

is to testfor the presenceof processorsat a numberof virtual locations(greaterthanthe

numberof processorsrequired)which areguaranteedto includeall physicallocations(for

example0 , 0 for the two dimensionalcase). Processorsare

Creatures

Implementing the CreaturesModel 92

insertedwhenaprocessoris foundto belackingatthetestedlocation.Whenthisprocedure

is completedit hasbeenestablishedthatevery virtual locationwithin theareacontainsa

processor,andhenceeverypossiblephysicallocationcontainsaprocessor. Suchatechnique

is easilyautomated,andcouldbeusedto developlessabstractdesignsfor realmachines.

3.5.5 A Proof of the NegativeOffset Effect

It hasbeenobserved that for even dimensionsit is necessaryto placean odd numberof

offsetsin a negativedirection(Sequin[56] notesthis asanoddity for thetwo dimensional

case).Thismaybeshown mathematicallyasfollows.

Thegeneralform of thematrix

0 0

0 0

0
...

...
...

... 0

0 0

maybereducedusingthefirst columnto find its determinant.Theresultingequationwill

have two components— that resultingfrom the in the first column,andthat resulting

from the below it. Thedeterminantwill beof theform: 1 1 Each

of thesecomponentswill beconsideredin turn.

The componentof the matrix’s determinantwill be times the determinantof the

bottomright sub-matrix.Thismatrixhasthesimplerform of

1

0 0

0 0

0
...

...
...

... 0

0 0

By consideringreductionalongthe top row it canbeclearlyseenthat thedeterminantof

thismatrixwill have thevalueof timesthedeterminantof thebottomright matrix. This

is againin theform of a typematrix,andhence 1 2 .

For thesimplecaseof 2

2

0
2

(Alternatively 1 mayconsideredasa trivial case).Hence .

Creatures

Implementing the CreaturesModel 93

Thefirst componentof thedeterminantof is therefore 1
1 .

Obtaining the secondcomponentof the determinantof takes a similar form. This

componentmaybeconsideredas timesthedeterminantof thesubmatrix 1.

1

0 0

0 0

0
...

...
...

... 0

0 0

This is againreduced,now usingthefirst column. Theresultingsubmatixis againin the

form of , hence 1 2 .

In thesimplestcases

2

0
2

(or alternatively 1). Hencein thegeneralcase 1 .

Thesecondcomponentof is therefore 1 .

Combiningthesetwo results:

When is oddthiswill reduceto theform . When is even .

In orderthat thesystembeoperable mustbeof thefirst form, aspreviously discussed.

Thismaybecorrectedfor evenvaluesof by reversingthesignof one . Any pair of ’s

mayadditionallybenegatedastheireffectclearlycancelsout.

3.6 A Transputer Implementation

3.6.1 Hardware

A small two dimensionalspiralwasconstructedusingtransputersby adaptinganINMOS

B042 board. It wasproposedthat the developmentof sucha systemwould demonstrate

thata spiraledsystemcouldbebuilt, andthatsucha systemcouldprovideaplatformfor a

highspeedimplementationof Creaturesonsemi-customhardware.

TheB042boardconsistsof 42 T8 transputers[41] connectedin a two dimensional6 7

NEWSgrid asshown in figure3.24. Theunconnectededgelinks areavailableto theuser,

Creatures

Implementing the CreaturesModel 94

B042

T8 T8 T8 T8 T8 T8

T8 T8 T8 T8 T8

T8 T8 T8 T8 T8 T8

T8 T8 T8 T8 T8 T8

T8 T8 T8 T8 T8 T8

T8 T8 T8 T8 T8 T8

T8 T8 T8 T8 T8 T8

T8

B042 Edge
Connector

Figure3.24: TheINMOS B042TransputerBoard

Creatures

Implementing the CreaturesModel 95

B042

Spiral PCB

Active Node

‘‘Spare’’ Node

Virtual Link

Physical Link

External
Link

External
Link

Figure3.25: A SpiralEmbeddedwithin a B042Board

andmaybeconnectedbackinto theboardto modify the topology. In additiona number

of auxiliary controlsignalsareavailable. Thereis no memoryon theboardotherthanthe

transputersinternalmemory(four kilobytesperprocessor).

A spiralof type 5 2 wasselectedto beembeddedinto theboard,asthis is

thesmallestdesirableshape(asderived in section3.5.1),andfits within theboardwith a

minimumof wastednodes.Theremaining“spare”transputersoperatetransparentlywhile

thesystemis running,copying thedataontheirlinks straightthroughwithoutmodification.

Theedgeconnectorprovidesenoughflexibility to allow this topologyto beconstructed,as

shown in figure3.25.While thiswastesanumberof transputers,it is simpleto implement,

andthe columnof transputerson the far right providesaccessto the arrayvia the spare

links, allowing datato be insertedinto the systemby routing processwhich may placed

there.

A PCB to implementthis wasconstructed,andthe resultanthardwarewasattachedto a

B008 boardvia oneof the sparelinks. This providesan additionaltransputerknown as

Creatures

Implementing the CreaturesModel 96

the“root”, with additionalmemory(typically oneMegabyte).Onelink of this processor

is connectedvia additionalhardwareto a hostmachine. The hostwill typically run an

“iserver” whichprovidesIO servicesto thetransputerboard.Becauseof its positionin the

network theroottransputermusthandletheseIO operations,andhencetherootoperatesas

acontrollerfor therestof thenetwork.

In the hardware configurationusedfor the developmentof the Creaturessoftware, the

connectionbetweenroot transputerandthe hostmachinewasprovidedby a B300 based

ethernetsystem.While thisprovidesaflexible developmentsystemavailabletomany users

spreadacrossa network, in a hostindependentform theperformanceof theB300 link is

verypoor. Fortunately, thelink is transparentto theuser, asidefrom its poorperformance

andhencecouldbereplacedby amoreeffectiveconnectionshouldit berequired.

3.6.2 Software

A Creaturessimulatorwasdevelopedin Occam[42] usingtheInmostoolkit, to run on the

transputerhardware. This consistedof a communicationslayerwhich providedfacilities

for transferringcreaturesaroundthenetwork, andcodedealingwith creaturesuponeach

node.

An individualnodeoperatesusingthesamealgorithmastheoriginalserialimplementation.

A singlelist of all creaturesuponthenodeis maintained,anda “cansee”list is calculated

for eachcreatureasit is required. The creatureis thensteppedusingcodeproducedby

a retargettedversionof pancake. The resultingcreature(s)may thenbe passedinto the

communicationscodewherethey arepassedto adjacentnodesasnecessary.

Thecommunicationslayerpassesalist of new creaturesto adjacentnodesateachtimestep.

Synchronisationisretainedby terminatingeachlist with amarker. Communicationproceeds

in eachdirectionin parallel. This allows computationon adjacentnodesto beup to half

a cycle out of phasewith adjacentnodes. For example: one node may completeits

calculation;it would thenbeableto enterinto communicationswith adjacentnodes,some

of whichmayhavehadlesscomputationtoperformandlittle datatopass,hencecompleting

communicationrapidly. Thesenodesmaythenstartcalculationof thenext step,whileother

nodesmay have yet to completethe previouscalculation,andenterthe communications

phase.

Computationmayonly begin onceall communicationhasbeencompletedfor that node.

However this semi-synchronouscouplingbetweennodesallows large amountsof clock

Creatures

Implementing the CreaturesModel 97

skew acrosstheboard,andhenceimprovedperformancecomparedto amorestrictly timed

system.

A “loader” processconnectedto the iserver insertscreaturesinto the systemhaving first

calculatedwhich nodetheir locationrequiresthey beprocessedupon. This calculationis

preformedusingthe matricesdescribedin section3.5.3. The populationof creaturesis

fed into thesystemover a numberof timestepsto preventthenodescloseto theinsertion

point overflowing. The systemthenrunspurly asa communicationssystemuntil it can

beguaranteedthatall creatureshave reachedthecorrectnode.Oncethesystemis loaded

theloaderprocessstartscollectingcreatureswhichhavecompletedtheir computation,and

returnsthemto theiserver. Becauseof its communicationwith theiserverthisprocessmust

berunon therootprocessor.

Eachcreaturecarrieswithin it a counterwhich is decrementedat eachtime step. When

this counterreacheszero the nodeholding it will attemptto route it back to the loader.

In addition eachnodeholds a counter, and will shut down following a pre-determined

numberof steps.Thisnodecountermustbesignificantlylargerthanthecounterwithin the

individualcreatures,asnodesarerequiredto operatebothduringthepreloadingof thegrid,

andduringthedumpingphase.

A throughrouterprocesswasplacedupontheunusedprocessors.Thoseat thetop of the

board(figure3.25)simply routefor a numberof steps.Thoseforming thecolumnat the

edgeof the boardmustprovide a morecomplex serviceasshown in figure 3.26. Each

channelcontainsa seriesof creatureswith endflagsto markeachtimestep.Creaturesare

readfrom thesouthandmergedinto thewest/eastdatastream,suchthatcreaturesremain

in thecorrecttime step.The“gen” processsendsclock ticks northto feedthesouthinput

of theprocessorabove it, asall theprocessorsin thiscolumnareidentical.Creaturesfrom

theeastandthewestarepassedthroughthenodeunchangedunlesstheir timerhasexpired,

in whichcasethey arepassedsouthwith any creaturesreceivedfrom thenorth.

TheInmostoolkit providesrelatively flexible mappingbetweenprocesses,virtual proces-

sors,and physicalprocessors.The software was thereforedevelopedto map onto the

hardware,thenmappedontoanidenticalsetof virtual processors.Thesevirtual processors

couldthenbemappedeitherdirectlyto therealhardwareor toasingleprocessorsfor debug-

gingandperformancecomparison.Howevermemorylimitation did limit theeffectiveness

of thisapproach.

Creatures

Implementing the CreaturesModel 98

Gen

Pass
wout ein

Pass

Merge

etmp

eout

sin

Merge

nin

sout

Merge

tmp2

tmp1

dumpchan

nout

ein

Figure3.26: RoutingIn TheB042’sSpareColoumn

Creatures

Implementing the CreaturesModel 99

Creatures per Generation
0 16 32 64 128 256

C
re

at
ur

e
S

te
ps

 p
er

 S
ec

on
d

1

10

100

1000

10000

100000

1000000

Single T8 Moving Single T8 Centered

B042 Moving B042 Centered

Figure3.27: Performanceof theTransputerImplementaion

3.6.3 Performance

The systemdescribedwas developedand debugged,and successfullyrun on a single

transputer. However memorylimitationsof theB042systempreventedthe full Creatures

codebeingrun in a truly parallelfashion. In orderthat the performanceof the software

couldbetestedon thelimited hardwareavailablemuchof theauxiliarycodewasremoved

from the simulator. This codedealt with the loading and saving of creatures,and the

long rangecommunicationsacrossthe network requiredto performsuchoperations.By

hardcodingsimplestartstatesit waspossibleto producea systemcapableof operatingin

4K of memory. However memorylimitations still restrictedthe populationsizeswhich

couldbetested.

TherestrictedsystemwasrunonbothasingleT8transputer(with 1Megof RAM, capableof

holdingthecompletenetwork), andtheB042system.Thetopologyof thevirtual network

usedin bothcasesis identical.Thesystemwastestedwith bothcreaturesremainingstation-

ary(to testtheperformanceof thecalculation,andthemappingoperations),andmoving at

every timestep(to demonstratethatspiralingreducesthecommunicationsoverhead).The

resultsof thesetestsareshown in figure3.27.

Creatures

Implementing the CreaturesModel 100

Creatures per Generation
0 16 32 64 128 256

S
pe

ed
up

0

10

20

30

40

50

B042 Moving SpeedUp B042 Centered SpeedUp

Figure3.28: SpeedupusingtheB042

Thegraphshowsthatasthepopulationis increasedtheperformanceof thesystemimproves.

Thisis dueto thereducedoverheads,andtheutilisationof all theslotswithin thesimulator.

Similar performancecan be seenin all other parallel implementationsof the Creatures

model. Unfortunatelydueto thememorylimitation the testonly reveal the beginningof

this curve wheremappingis not significant. Evenat the largestpopulationsizeonly ten

creaturesareallocatedto eachbucket. Were the systemto be build with morememory

pernodelargerpopulationscouldbeaccommodated.As populationincreasedthemapping

operationwouldagaincometo dominate,asit is still an 2 operationwithin asinglemode,

andperformancemeasuredin CreaturestepsPerSecondwouldfall off with 1 . In sucha

caseperformancecouldbeimprovedfurtherby usinganadditionalhashingfunctionwithin

eachsinglebucket.

The simulationoperatesfasterwhencreaturesarenot moving, asundertheseconditions

very little datamustbe passedbetweennodes. However the differencesin performance

betweenthemovingandstationarytestsisverysmallcomparedto theorder(s)of magnitude

measuredontheConnectionmachine.ThisillustratesthattheSpiralledmappingiseffective

at reducingcommunicationsoverhead.

An interestingresultmaybeseenbeexaminingthespeedupfoundin thesystem(shown in

figure3.28).Speedupis approximately45 for smallpopulations(the>1 efficiency maybe

Creatures

Implementing the CreaturesModel 101

attributedto experimentalerror). Howeverasthepopulationincreasesthespeedupfalls to

aroundtwentyeight. This is counterintuitive,asit is generallyexpectedthatspeedupwill

improvefor largerpopulations.

The anomalyin speedupcanbe attributedto the way the twistedtopologyis embedded

within theB042. As wasshown in figure3.25theboardcontains42 processorswhich are

all usedaspartof thenetwork. Howeveronly 29of theseareactuallyusedfor computation

— theothersproviding routingservices.Whenthe load is low, all nodesrequiresimilar

amountsof work, so the 42 processorsmay all operateeffectively. However when the

numberof creaturesis high, the load on the computingnodesis far higher than that of

theroutingnodes.Undersuchconditionsa singleprocessorcandivide its time efficiently

betweenall thenodes.Howeverin theparallelcaseonly29of theprocessorsareperforming

significantamountsof work, hencethedropin speedupfrom approximately“42” to “29”.

Examinationof thespeedupin this fashionindicatesthatdespitetheunusualbehaviour of

the systemit is in fact producinga linear speedup.From this resultandan examination

of the structureof the systemwhich may be seento be free from bottlenecksit may be

predictedthatlargersystemsconstructedusingthistopologywouldperformsimilarly well.

Thepeakperformancefromthetransputerimplementationwasin excessof 500,000creature

stepsper second. The CM2 implementationmanagedonly 128,000. More importantly

performanceexceeded200,000stepsper secondwhencreaturesweremovedaroundthe

grid. Thoughthis may appearto be a seriousdegregation in performance,the CM2’s

performancedroppedby a factorof twenty whenmovementwas introduced. Given the

largenumberof creaturesmigratingroundthesystem,andconsideringthatin arealsystem

not all elementsmay chooseto migrateat every timestep,this drop in performanceis

consideredacceptable.

Thoughtheperformanceof theB042systemcomparesmostfavorablywith the10,000CPS

obtainedfrom aserialworkstationbasedsolution,theimplementationis notcurrentlysuit-

ablefor practicaluse,dueto theseverelimitationsit placesonpopulationsizes.Oncethese

have beenresolved,anda suitableuserinterfaceinstalled,the transputerimplementation

shouldprovideanexcellentplatformfor thedevelopmentof Creaturessimulations.

3.7 Comparisonof PerformancebetweenImplementations

Theperformanceof eachimplementationis shown in figure3.29. Thevaluesselectedto

Creatures

Implementing the CreaturesModel 102

Creatures per Generation

16 32 64 128 256 512 1024 2048 4096 8192

C
re

at
ur

es
 p

er
 S

ec
on

d

1

10

100

1000

10000

100000

1000000

MasPar NeXT CM2 B042 T8 NeXT Bucketed

Figure3.29: Performanceof theImplementations

Creatures

Implementing the CreaturesModel 103

representeachplatform arethoseof the fastestversionof the systemwhenall creatures

weremoving (thisbeingmoreappropriatefor practicalusethanthestationarycase).

The bucketedNeXT implementationprovides good performanceover a large rangeof

populationsizes.In additionit is theeasiestto use,andprovidesgreaterfunctionalitythan

theothersimulators.It hasbeenextensivelytestedduringthecourseof thisresearch,having

beenusedto developtheapplicationsdiscussedin thechapter4, andis thereforeknown to

berelatively bug free,andstable.Thedynamicnatureof theimplementationensuresthat

thesystemwill not crashasaresultof bucketoverflow.

TheConnectionMachineimplementationproducedvery poor results. Despitebeing(on

paper)thefastestmachineusedduringtheproject,theimplementationof Creaturesis slow.

This is primarily dueto communicationsoverheads,theCM2’s hyper-cubenetwork being

poorly suitedto theCreaturesproblem. In additionthe systemwassomewhat fragile, as

eachnodehasa limited capacity, solocationscouldeasilyrunoutof memory.

TheMasPar implementationwasbasedon identicalcodeto that usedon the Connection

Machine,andhencewasequallyfragile. In factthemorelimited configurationoptionsof

the MasPar hardwareresultedin a systemthat waseven morelimited in its capacity, as

theConnectionMachinesupportsvirtual processorswhich maybeconfiguredto bestsuit

a particularsimulation. However the MasPar’s communicationsgrid, andglobal routing

hardwareproved far moreeffective thanthe ConnectionMachine’s wormholerouting at

dealingwith themigrationof creaturesthroughspace.Whileperformancewasonlyslightly

betterthantheserialNeXT basedsystem,MasParsystemsareavailableata fractionof the

costof a ConnectionMachine.

Having learnt from the previous implementations,the transputerbasedsystem’s perfor-

mancewasexcellent. In additionto beingthecheapestsystemit wasalsothefastest,and

mostscalable,providing linear speedup.It provedpossibleto designan implementation

suchthatthemovementof creatureshadlittle impactonthesystemsperformance.However

thehardwareavailablefor developmentpreventedthefull Creaturessystembeingrun,and

severely restrictedthe populationsize. Were a fully operationalsystemdeveloped,the

evidencecollectedindicatesit wouldperformexcellently.

Creatures

Applications 104

4

Applications

During the developmentof the Creaturessystem,a numberof simulationswerecreated,

bothto testthe implementation,andto exploreandillustratethecomputationalmodel. A

numberof thesearepresentedin thischapter, showing boththeapplicationof creaturesto a

rangeof systems,andrecordingsomeof theapproachesdevelopedfor implementingthem.

The exampleshave beenbroadlygroupedinto CA style problemsand“more complex”

models. The former set of examplesare reworkingsof classicCA problemswherethe

stateof eachcreatureis small, andbehaviour is deterministic. Theseillustratehow the

dynamicnatureof Creaturesproducesolutionswhicharegenerallysimpler, moreintuitive,

andsometimesmoreefficient thantheCA equivalent.

Thelattergroupof problemsarebestconsideredasdemonstrationsof how Creaturescould

beusedasa practicalresearchtool in a numberof applicationfields. It is not claimedthat

themodelsdevelopedareaccuratesimulationsof realsystems,assuchvalidationis beyond

the scopeof this work. However they do illustratehow Creaturesmay be usedto build

largersystems.Typically thesemodelsarenon-deterministic,andallow eachCreatureto

holda largerinternalstate.

Thefinalproblemof thissecondgroupdemonstratesthecompletedevelopmentof asimula-

tion fromaphysicalsystemof interest,throughtheimplementationof anabstractsimulation

to thestatisticalanalysisof resultsobtainedfrom thesimulations.This analysisprovides

insightinto theoriginalphysicalproblem.

Creatures

Applications 105

NP

SP

EPCollisionWP

NEIGHBORHOOD:vn;

TYPES:box,np,ep,sp,wp;

RULE:
 {
iam(box): CENTER;

iam(np):
 {
 CANSEE(sp):
 {
 BECOME(ep);
 EAST;
 }
 CANSEE(box):
 {
 BECOME(sp);
 SOUTH;
 }
 true:
 NORTH;
 }
 }

Figure4.1: An IdealGasSimulation

4.1 ClassicCA Problems

4.1.1 An Ideal Gas

One commonuseof cellular automatais in the modelingof gases[28]. Cells attempt

to representthe presence(or otherwise)of gasparticlesat eachlocation. Although the

resultsare good, the techniquesusedto maintaindataintegrity, are complex (Margolis

neighborhoodsfor example[63]). TheCreaturesmodeloffersanintuitivealternative: BOX

creaturesareusedto surroundacollectionof gasparticlecreatureswhichmovearoundand

bounceoff eachother. Figure4.1showsthedefinitionsof BOX andonetypeof gasparticle

NP. TheparticlesEP, SPandWParesimilarly defined.TheCreaturessimulationis simpler

Creatures

Applications 106

thanCA, asit allows thebehaviour of theactive agentsin thesystem(gasparticles)to be

describeddirectly, ratherthanindirectly thoughthebehaviour of space.

Thefour basicparticletypesused:NP, SP, EPandWPmoveNORTH, SOUTH,EASTand

WESTrespectively. Particlesonly interactwith particlesmoving in theoppositedirection.

Uponencounteringsucha particlethey turn right through90 degrees.This is effectively

an elasticcollision, and momentumis conserved as required. In additionparticleswill

reboundfrom boxparticleswhichsurroundthegas.

It isnecessarytohavefour typesof particle,astheinteractionsbetweenparticlesdependson

beingableto examinethemomentumtermof theotherparticle.Momentummusttherefore

bestoredin apublicly readableform, ie. asthetype.

This model may be developedto include diffusion limited aggregation by adding the

creaturetypeICE.ThishasthesamebehaviourasthecreatureBOX, but uponencountering

acreatureof typeICE theparticlesrebound,andthenbecomesICE.

4.1.2 A Model of Digital Logic

TheCreaturesmodelmaybeusedto build digital logic simulations.Unlike thetechniques

usedto tacklethisproblemwith CA[14], themethodsinvolvedin producinglogic systems

with Creaturesarerelatively intuitive. A minimalsystemis shown in figure4.2.

A creaturetypeSIGNAL is definedwhichwill moveFORWARD until it encountersalogic

gate(FORWARD maybedefinedin anadditionalmacropackageby redefiningtheregular

directionsto storetheir directionin thecreature’s internalstate.FORWARD thenrepeats

thepreviousmove). This creaturerepresentsa signalof logic one. Uponencounteringa

gatethecreatureDIEs,asthetaskof transmittinginformationis complete.Thegatemay

thenproducea new SIGNAL to carry informationthroughthesystemto thenext gate. It

shouldbenotedthatSIGNALs do not interactwith eachother. This allows logic streams

to crossin asimilar fashionto beamsof light.

Thegatesareof theOR type,asthis is bestsuitedto theCreaturesenvironment.If anOR

creatureobservesa SIGNAL creatureit createsa new OR creatureto takesits place,then

becomesa SIGNAL, andstartsmoving in anappropriatedirecion. Four typesof OR gate

areavailable,eachproducingoutputin a differentdirection. This allows OR gatesto be

usedto turn a signalstreamthroughanangle(signalsdo not run alongwires). By placing

two differenttypesof ORgateat thesamelocationaSIGNAL maybesplit to producetwo

Creatures

Applications 107

NEIGHBORHOOD:vn;

TYPES:signal,eastor,northor,southor,westor,eastnor;

RULE:
 {
 iam(signal):

{
 CANSEE(eastor...eastnor): DIE;
 ! : FORWARD;
 }

 iam(eastor):
 {
 CANSEE(signal):
 {
 BIRTH(eastor);
 BECOME(signal);
 EAST;
 }
 true:CENTER;
 }

 iam(northor): {...}
 iam(southor): {...}
 iam(westor) : {...}

 iam(eastnor):
 {
 CANSEE(signal)=0:
 {
 BIRTH(eastnor);
 BECOME(signal);
 EAST;
 }
 true:CENTER;
 }
 }

NEIGHBORHOOD:vn;

TYPES:signal,eastor,northor,southor,westor,eastnor;

RULE:
 {
 iam(signal):

{
 CANSEE(eastor...eastnor): DIE;
 ! : FORWARD;
 }

 iam(eastor):
 {
 CANSEE(signal):
 {
 BIRTH(eastor);
 BECOME(signal);
 EAST;
 }
 true:CENTER;
 }

 iam(northor): {...}
 iam(southor): {...}
 iam(westor) : {...}

 iam(eastnor):
 {
 CANSEE(signal)=0:
 {
 BIRTH(eastnor);
 BECOME(signal);
 EAST;
 }
 true:CENTER;
 }
 }

Figure4.2: A Digital Logic Simulation

Creatures

Applications 108

streamsof SIGNALS moving in differentdirections.

Thetechniqueof having a creaturewhich waits for anevent,which uponbeingtriggered

createsa new creatureto wait for the next event while itself becominga messengeris

frequentlyusedin Creaturessimulations.Thewaitingcreaturehaslittle state,andtherefore

is simpleto replace.Uponbeingtriggeredthe creatureacquiresinformationit wishesto

transmit— this maybedifficult to passon to anoffspring. In additionwerethewaiting

creatureto produceanoffspringit would needto distinguishit from any incomingsignal

(failureto dosois asimplemethodof producingamemory).

OR gatesaloneare insufficient to producea logically completesystem. Someform of

inverter is also required,and in this simulation inversion is provided by a NOR gate.

Infact the NOR gatealoneis sufficient to implementany logic function, but the simpler

OR gatesareusefulfor “steering” informationaroundthe system. In a practicalsystem

furthercomponents(eitherlogic functionsor higherlevel structuressuchascountersand

memories)maybeprovidedin orderto makeimplementationof a requiredcircuit simpler.

The systemhere is theoreticallyadequateto build circuits of arbitrary complexity. In

practicepropagationdelaysmay leadto difficulties in building largecircuits, thoughthis

is no morea problemherethanit is in systemssuchasreconfigurablelogic or microwave

systems,wheretechniqueshavebeendevelopedtodealwith significantpropagationdelays.

4.1.3 The FrenchFlag Problem

The frenchflag problem[70] wasfirst put forward in the mid 60’s asa simplificationof

themechanismsrequiredin theconstructionof multi-celledorganisms.Therequirementis

for a worm to divide itself into threeequallysizedportions,a HEAD, BODYandTAIL (or

alternatively red,whiteandblueasin thefrenchflag),usingonly local information.

Thesolutionshownin figure4.3usestwochemicals,emittedbyeachcell. Cellsarearranged

in a line from Eastto West— it is irrelevantwhat typeof cellsareusedfor initialisation

asthey will changetypeimmediatelyto a moreappropriatestate.Onechemicalmigrates

East,while theothermovesWest.By consideringthedensityof thesetwo chemicalsacell

decideswhich typeof cell it shouldbe.

If at any time a cell is removedfrom thecenterof theworm, thechemicalswill rebalance

to producetwo smallerwormswith correctlyproportionedheadsandbodies.Information

is distributedamongall theelementsof thesystemwhich collectively areableto behave

in thedesiredfashion,thoughnosinglenodehasknowledgeaboutthewholesystem.The

Creatures

Applications 109

NEIGHBORHOOD:vn;

TYPES:eparticle,wparticle, head,body,tail;

RULE: {
 iam(head)| iam(body)|iam(tail)
 {
 true : {
 birth(eparticle);
 birth(wparticle);
 become(body);
 }
 cansee(eparticle) > 2*cansee(wparticle) : become(tail)
 cansee(wparticle) > 2*cansee(eparticle) : become(head)
 true : CENTER
 }
 iam(eparticle):
 {
 cansee(head)|cansee(body)|cansee(tail) : EAST
 ! : DIE
 }
 iam(wparticle):
 {
 cansee(head)|cansee(body)|cansee(tail) : WEST
 ! : DIE
 }
 }

Figure4.3: TheFrenchFlagProblem

Creatures

Applications 110

failureof a cell doesnotunbalancethestructureof thesystemasa whole,which is ableto

recover. Collectivebehaviour giving riseto structureandstability is animportantproperty

of many Creaturessimulations,aswill beseenin latermorecomplex examples.

4.1.4 The Firing SquadProblem

The firing squadproblemis anotherclassicCA problem: it is this time requiredto syn-

chronisea numberof cellsspreadover anareaof space,suchthat they all performsome

actionat thesametime. Thisproblemhasparallelsin biologicalsystems,but is commonly

expressedasa line of soldierswhomustall fire uponreceiving anappropriatecommand.

TheCreaturessolution(figure4.4)takesaveryphysicalapproachto theproblem:“soldier”

creaturesproduce“bullet” creatureswhenthey seea “shout”. A “sargent” creaturewalks

alongtheline, andcountsthenumberof soldiers,thenretreatsa suitabledistance.It then

returnsto its startingpoint,producinga“shout” for eachsoldier. All thesewill arriveat the

sametime.

This exampleillustrateshow a creaturessolutionto a taskcanbe arrived at by taking a

physicalapproachto the problem. Thoughthe exact detailsof implementationmay be

complex (as in the “sargent” creature),the rolesof creaturesrepresentreal components

in a system,andhencetheir basicfunctionmay begraspedby even the mostnaive user.

Deriving thebasicstructureof asimulationis oftenthemostdifficult step— it is essential

that theprogrammerhasa goodfeel for how eachcomponentshouldbehave. As a result

of thisCreaturescanprovidea moreaccessibleenvironmentthantraditionalprogramming

systems.

4.1.5 The Gameof Life

Perhapsthemostfamousof all CA problems,ConwaysGameof Life[22] hasaverystrong

spatialbasis,and it would at first appearthat thereis little to be gainedby modelingit

within Creatures.This implementationdemonstrateshow, by consideringthe gamein a

non-spatialfashiona Creaturessimulationmaybefar moreefficient thana CA simulation

by directingcomputationaleffort only whereit is required.

Ratherthanconsideringthespace,considerthateachlivecellproducesspores.Thesespread

to the neighboringlocations,wherea cell masteris elected,which countsthe numberof

sporesandif appropriatestartsthenext generation.Thecodefor this is givenin figure4.5.

Creatures

Applications 111

NEIGHBORHOOD:moore;

TYPES:soldier,bullet,sargent,shout;

VARS:int state,int counter;

INIT:{
 counter=0;
 state=0;
 }

RULE:{
 iam(soldier):
 {
 cansee(shout) : birth(bullet);
 true : CENTER;
 }
 iam(bullet) :NORTH;
 iam(shout) :{
 cansee(soldier) : DIE;
 true : NORTH;
 }
 iam(sargent):{
 state==0:{
 cansee(soldier) : {counter=counter+1;EAST;}
 ! : {state=1;SOUTH;}
 }
 state==1:{
 counter>1 : {counter=counter-1;SOUTH;}
 ! : {state=2; NORTHWEST;}
 }
 state==2:{
 cansee(soldier)==0: {birth(shout);NORTHWEST;}
 ! : {birth(shout);state=0;EAST;}
 }
 }
 }

Figure4.4: TheFiring SquadProblem

Creatures

Applications 112

Becauseacreaturecanonly givebirth at its currentlocationthesimulationnecessarilyhas

two phases— thecountingwherethesporesdecideif acell is alive,andcreatenew spores

if appropriate,andthe spreadingphasewherethis informationis passedto the adjacent

locations.

Thecreaturesimplementationonly examinesthosegrid pointswhichmight bealive in the

next generation— ie thosethatareadjacentto alivecell. Thisallowsthesystemto operate

on a nearinfinite grid, astypically only a finite subsetof thecellsareactive (in theworst

caseall cellsmaybein thisstateandhenceall mustbeconsidered,but this is unlikely). In

thecaseof a CA implementationall cellsmustperformthesamecalculationregardlessof

thestateof the system.By directingeffort towardscells which might becomeactive the

Creaturessystemwill bemoreefficient.

4.1.6 Langton’s Ant

Themathematicalcuriosityknown asLangtonsAnt[60] demonstratessimplyhow ordered

behaviourcanemergefrom apparentdisorder. FromaCreaturesperspectiveit alsodemon-

strateshow a behaviour can easily be codedto meeta specification,and how complex

resultscanemergefrom trivial simplerules.

Langton’santis acreaturewhichturnsleft whenit seesablacksquareandturnsright when

it seesawhitesquare.In doingsoit alwaysreversesthecolourof thesquare.Startingfrom

an all white infinite grid the ant runsaroundapparentlyaimlesslyfor over ten thousand

movesbeforecreatingastable“highway”, asshown in figure4.6. Theantwill alwaysbuild

ahighwayregardlessof thestartingstateof thegrid,andhighwayswill beconstructedeven

if severalantsarepresenton thegrid.

Althoughthe behaviour of the ant is fully specified,in a very simplefashionit is almost

impossibleto predict the behaviour of the completesystem. It is unlikely that highway

building could be anticipatedwithout runningthe code,thoughis canbe proved that the

ant’s trajectoryis unbounded.The self-similarity, yet unpredictabilityof the systemhas

certainparallelswith fractalsystems,thoughherethesystemis discrete.

A Creaturesimplementationisshownin figure4.7. Theonlycomplexity within thecreatures

codefor Langton’santis thattheproblemis basedin termsof left andright while Creatures

generallydealswith absolutedirections. Even with this complicationthe coderemains

trivially simple. Black squaresarerepresentedby thepresenceof a creaturewhile white

squaresremainvacant.Uponseeinganantablacksquarediesto becomewhite,while upon

Creatures

Applications 113

NEIGHBORHOOD:moore;

TYPES:cp,ep,nep,np,nwp,wp,swp,sp,sep;

VARS:int age;

INIT:age=0;

RULE:{
 age==0:
 {
 true : age=1;
 iam(cp) : CENTER;
 iam(ep) : EAST;
 iam(nep) : NORTHEAST;
 iam(np) : NORTH;
 iam(nwp) : NORTHWEST;
 iam(wp) : WEST;
 iam(swp) : SOUTHWEST;
 iam(sp) : SOUTH;
 iam(sep) : SOUTHEAST;
 }
 age==1:
 {
 iam(ep) & cansee(cp) : DIE;
 iam(nep) & cansee(cp...ep) : DIE;
 iam(np) & cansee(cp...nep): DIE;
 iam(nwp) & cansee(cp...np) : DIE;
 iam(wp) & cansee(cp...nwp): DIE;
 iam(swp) & cansee(cp...wp) : DIE;
 iam(sp) & cansee(cp...swp): DIE;
 iam(sep) & cansee(cp...sp) : DIE;

 (cansee(ep...sep)==2 & iam(cp))
 | cansee(ep...sep)==3 : birth(cp...sep);

 true: DIE;
 }
 }

SporeSporeSpore

SporeSpore

SporeSporeSpore

Active
Cell

Figure4.5: TheGameof Life

Creatures

Applications 114

Figure4.6: LangtonsAnt

Creatures

Applications 115

NEIGHBORHOOD:vn;

TYPES:black,ant;

VARS:int dir;

INIT:dir=0;

RULE: {
 iam(black) :
 {
 cansee(ant) : DIE;
 ! : CENTER;
 }

 iam(ant):
 {
 cansee(black): dir=dir+1;
 ! : {
 dir=dir-1;
 birth(black);
 }
 dir<0: dir=dir+4;
 dir>3: dir=dir-4;

 dir==0 : EAST;
 dir==1 : NORTH;
 dir==2 : WEST;
 dir==3 : SOUTH;
 }
 }

Figure4.7: Langton’sAnt Code

Creatures

Applications 116

findinga whitesquaretheantturnsit black. Thedir variableis usedby theantto indicate

its previousorientation,andincrementedor decrementedto turn left or right.

Aswith thelife examplethisproblemrequiresaninfinitegrid (it hasbeenshownthattheant

will alwaysexceedany finite area[60]) which would not bepossiblewith CA techniques.

The simplicity of this implementationdemonstratesthe applicability of Creaturesin the

field of Alife andanti-chaos.

4.2 Mor eComplexModels

4.2.1 Simulating RoadTraffic Flow

Roadtraffic flow is traditionallymodeledusingstatisticalmethodsandtechniquessimilarto

thosefoundin fluid dynamics[57] [4]. Thisabstractview is difficult to relateto theintuitive

behaviourof realcars,andhencemaybeunreliablein its predictivebehaviour. A Creatures

simulationof traffic flow maydirectly representcarsasactive elementswithin themodel,

scalingthewell understoodsmallscalebehaviour into thecomplex largescaleeffectsfound

in real roadsystems.Figure4.8 shows a very simplemodelof roadtraffic queuingat a

junction. Even this trivially simplemodelof cars’behaviour producesinterestingresults

whenseveralcarsinteract.

A sourcecreaturecreatescarsthatmovein aneasterlydirection.In thissimpledemonstra-

tion, their progressmaybeblockedby oneor moretraffic lights. Traffic lights maybein

oneof two states.Whenin thego statethey do nothingbut wait for a presettime. While

in thestopstatethey produce“stoplight” creatures.Thesemovewestonesquare,andthen

wait for a randomtime interval beforedieing. Whena carencountersa stoplight it stops

moving, andstartsproducingits own stoplights. Thesein turnstopthecarbehind,andan

orderlyqueueis formed.

When the traffic light stopsproducing“stoplight” creatures,the car at the front of the

queuewill startmoving again,andhencethewholequeuewill eventuallyrestart.However

the randomdelaybeforethe deathof the “stoplight” creaturescausesa delayin eachcar

restarting.This leadsto bunchingandincreasedtailbacks,asfoundin many realsituations.

Frequentlya block of carswill bestationary, thoughthereis no immediateimpedimentto

their progress— thebunchhassimply grown backfrom a genuineobstacleuntil it is an

obstaclein its own right.

Creatures

Applications 117

NEIGHBORHOOD:vn;
TYPES:source,car,stoplight,trafficlight;
VARS:int time,int speed;
INIT:
 {
 time= -1;
 speed=1;
 }
RULE:
 {
 true : time=time+1;

 iam(source): {
 time%10==0:birth(car);
 true :CENTER;
 }

 iam(car) : { speed==1:{
 cansee(stoplight): {
 speed=0;
 birth(stoplight);
 CENTER;
 }
 !: EAST;
 }
 speed==0:{
 true: birth(stoplight);
 cansee(stoplight)>1: CENTER;
 !: {
 speed=1;
 EAST;
 }
 }
 }

 iam(trafficlight): {
 time==29: {
 time=0;
 speed= 1-speed;
 }
 speed==0: birth(stoplight);
 true: CENTER;
 }

 iam(stoplight): {
 time==0: WEST;
 random%2==0: DIE;
 true: CENTER;
 }
 }

Source Car Car
Traffic
LightStopStop

Figure4.8: RoadTraffic Flow

Creatures

Applications 118

Thismodeldemonstrateshow a simulationmaybeconstructedsuccessfullyby describing

the intuitive behaviour of small elementsin the system,and then observingthe results

of their interactions.Thebunchingof carsproducedby thesimulationis aneffect easily

observablein arealsystemthoughit isnotexplicitly referencedin thesimulationdescription

— it couldbeconsideredasemergentbehaviour.

4.2.2 Water Curr ent Analysis

The behaviour of water current in oceansand rivers is measuredby two classesof

techniques[48]:

Lagrangian:Thelocationof particlesis tracedoveraperiodof time.

Eulerian:Thestrengthanddirectionof thecurrentis measuredatmany fixedpoints.

Thesetwo typesof dataaregenerallyusedtogetherto producea completepictureof the

behaviour of currentsin anarea.This simulationconsiderstheproductionof Lagrangian

datafrom collectedEuleriandata.

Thecurrentsatregularpointsin themouthof theriverOler(in France)havebeenmeasured,

both the direction and intensity of movementbeing recorded(Eulerian data has been

collected).Storingthisinformationin aCA wouldbesimple,dueto itsstatic,spatialnature.

Howevertheelementsof realinterestmaybethebuoyswhichmustmovethoughthesystem

(Lagrangianinformationis required).Suchmovementof buoys betweenlocationswould

besomewhatdifficult to implementin CA, astheconceptof movingelementsisnotdirectly

supported.

Thecurrentsin thebayof theriverOlerweremodeledby placingacurrentcreatureateach

discretelocationwithin theareaof simulation.Thiscreatureholdsavelocity, anddirection

for the waterat that location. Buoys observe the currentat their location,andbasedon

that,decideto moveto anadjacentlocation.Landcreaturesmarktheedgeof thebay. The

runningsimulationis shown in figure4.9. It shouldbenotedthat thesimulationdoesnot

occupy asimplyboundedarea,asonly sufficient landis requiredto boundthewater. Were

it necessary(asin CA) to fill theentirespacewith processesalmosttwiceasmany creatures

wouldberequired.

The numberof Creaturetypes,andthe discretespace/timemodel limits how accurately

thecollecteddatamayberepresentedwhenobservedby thebuoy. A currentmayhave an

Creatures

Applications 119

Figure4.9: Currentson theriverOler

accuratevelocityheldinternally, but atany onetimeabuoy musteithermove,or notmove

to an adjacentlocation. However a simulationmay be built which behavesin a fashion

consistentwith theaccuratedataby theuseof dithering.At any onetime, thecurrentwill

eitherbeactive or not, but it will hold within its privatestateanaccuratevalueof its true

velocity. A strongcurrentis morelikely to beactive,hencethecorrectvelocity is achieved

whenaveragedovera numberof timesteps.

A similar actionmay be usedto control directionof the current. Noise is addedto the

strengthof the currentbeforeit is observed by the buoy. This helpsto producea more

statisticallylikely result,aschaoticeffectsareaccountedfor. A simplifiedversionof the

codeis shown in figure4.10.

In addition to this JAM code, the full simulationusedthe implementationspecificfile

“baydefs” to redefinethe appearanceof the simulation,and to load the velocity of the

currentsfrom thepositionfile. Thoughsuchmodificationsaresystemspecificthey allow

themodelto produceoutputwhich displaysthestateof the systemmoreaccuratelythan

the default methods. The modificationto the format of the positionfile allowed details

informationabouta specificsystemto be included. Thesechangeswereavailableto the

enduserwithout theneedto modify thesimulator.

The dithering[43] techniqueusedin this exampleis frequentlyof usewhenbehaviour is

requiredwhich doesnot sit easilywith thediscretenatureof thesystem.It hasbeenused

in anumberof simulationsallowing creaturesto movewith variablespeed,andin variable

directionsbeyondthelimited neighborhoodandsteptimesavailablein Creature(andCA)

Creatures

Applications 120

NEIGHBORHOOD:moore;

TYPES: mc,mn,me,ms,mw,buoy,land;

VARS: int temp, int strength,int direction;

RULE:{
 true : temp=random%10;
 iam(buoy):{
 cansee(mc) : CENTER;
 temp==9 : CENTER;
 temp<2 :{
 cansee(mn) : NORTHEAST;
 cansee(me) : SOUTHEAST;
 cansee(ms) : SOUTHWEST;
 cansee(mw) : NORTHWEST;
 }
 temp>6 :{
 cansee(mn) : NORTHWEST;
 cansee(me) : NORTHEAST;
 cansee(ms) : SOUTHEAST;
 cansee(mw) : SOUTHWEST;
 }
 true : {
 cansee(mn) : NORTH;
 cansee(me) : EAST;
 cansee(ms) : SOUTH;
 cansee(mw) : WEST;
 }
 }

 iam(land): CENTER;

 temp < strength:{
 direction==1 : become(mn);
 direction==2 : become(me);
 direction==3 : become(ms);
 direction==4 : become(mw);
 }
 ! : become(mc);
 true: CENTER;
}

Figure4.10: SimulationWaterCurrents

Creatures

Applications 121

systems.

4.2.3 A Model for the Spreadof SexuallyTransmitted Disease

Themodelof sexualbehaviourshown in figure4.11is oneof themostcomplex simulations

developedusingCreatures,anddemonstratessomeof the power (anda potentialweak-

nesses)of thecreaturestechnique.It modelsthespreadof a sexually transmitteddisease

throughapopulation[2].

Eightcreaturetypesareusedto representall combinationsof Male/Female,Infected/Clear

and Nonactive/Active membersof the population,and define their interactions. Each

creaturealsohasa numberof internalattributeswhich it usesto control its own personal

behaviour. Theseareinitialisedto defaultvalues.

At eachstepasmallfractionof thepopulationwill diefrom“natural” causes.An additional

fraction is killed asa resultof beinginfectedby disease(representedby the letter “i” as

thesecondcharacterin its creaturetypename). Following this the time-sincevariableis

increasedfor eachcreature,thisrepresentsthetimesinceits lastsuccessfulinteraction.The

confidencevariableis decreasedto representof ageneralfall in thecreaturesperceptionof

its own activity level.

Thesecondsectionof codemarkedin figure4.11representsthebehaviour of creaturesthat

arenot currentlyactive. Shoulda creaturefind itself alonewith a memberof theopposite

sex, it may, baseduponthetime sinceits last interactionchooseto attemptaninteraction,

by becoming“active”. Becoming“active” indicatesto othercreaturesthat thecreatureis

willing to interactat thenext timestep.

If a creatureis marked asactive, andis alonewith a memberof the oppositesex which

is similarly signalling,an interactionis deemedto have taken place. This will be in the

timestepfollowing thedecisionto becomeactive andis describedby the third sectionof

marked code. If eitherparty was infectedthen the diseaseis passedwith a predefined

probability. Thetime-sincevariableis resetfor bothcreatures.Activecreaturesaremarked

asno longerbeingactive regardlessof whetheraninteractiontookplace.

All creaturesthenmove to a randomadjacentlocation,usingthe “WANDER” operation.

This is definedoutsideof thecreaturesmodelfor convenience,thoughtheexactnatureof

movementcouldhavebeencodedin JAM. Althoughthemovementis currentlyrandom,a

morecomplex modelcouldbasemovementuponthepreviousbehaviour, andactionsof the

Creatures

Applications 122

NEIGHBORHOOD:vn;
TYPES:fcn,fca,fin,fia,mcn,mca,min,mia;
VARS: int timescince;
INIT: timescince=0;

RULE: {
random%LIFEEXPECTANCYN==0: DIE;
(iam(fin)| iam(fia)| iam(min)| iam(mia))

& random%LIFEEXPECTANCYI==0 : DIE;
true: timescince=timescince+1;

iam(fcn)| iam(fin)| iam(mcn)| iam(min):
{
cansee(fcn)+cansee(fin)==1 & cansee(mcn)+cansee(min)==1

& random%100<timescince:
{
iam(fcn) :become(fca);
iam(fin) :become(fia);
iam(mcn) :become(mca);
iam(min) :become(mia);
true :CENTER;
}

}

!: {
cansee(fca)+cansee(fia)==1&cansee(mca)+cansee(mia)==1:

{
iam(mca)& cansee(fia) & random%100<CONTAGEOUSNESS:

become(mia);
iam(fca)& cansee(mia)& random%100<CONTAGEOUSNESS:

become(fia);
true: timescince=0;
}

iam(mca): become(mcn);
iam(mia): become(min);
iam(fca): become(fcn);
iam(fia): become(fin);

}

true: WANDER;
}

Figure4.11: A Sexualbehaviour Model

Creatures

Applications 123

creature.

While this modelis a grosssimplificationof thesystembeingmodeled,Creaturesmodels

of slightly increasedcomplexity have shown someinterestingresults.Thesimulationhas

beenextendedto includebirths,anda “confidence”variablewhich affectsprobabilityof

interactionof thecreature.

Thecodingof this simulationis mademorecomplex thanit needbeby thescalarnature

of creaturetype. Much of thecodeis repetitive,asit attemptsto dealwith setsof creature

typesin a consistentway. For example:all infectedcreatureshave a higherprobabilityof

dying. The currentsystemmusttestfor eachpossibletype of infectedcreature,asthere

is no way of structuringthecreaturetypes. It would bedesirableto extendthecreatures’

externalstateto allow morecomplex interactionsto bedescribedeasily. However this is a

non-trivial problemwhich is consideredfurtherin section5.2.2.

4.2.4 Taxis asa Goal Orientated Navigation Strategy

Background

Femalecrickets[39] locatepotentialmatesover large distances(in the order of 10’s of

meters)by the chirping noisemalesproduceduring the matingseason.The femaleap-

parentlyhastheability to distinguishthechirp from othersounds,andidentify a mateof

theappropriatespeciesby propertiesof the song. A singlemalemaybe selectedfrom a

numberof soundsources,andthefemalewill follow thissoundreliably.

Suchabilities would appearto indicatesomehigh level cognitive function, or at least

somekind of decisionmakingmechanism.However simulationsusingsmall robots[67]

have demonstratedthat the physicalconstructionof the cricket’s earsprovide sufficient

mechanismto eliminatesoundsourcesof the incorrecttype, and selecta single source

basedsolelyuponits volume.Usingsuchasimpletechniqueof moving towardstheloudest

signal(phonotaxis1) produceswhatappearsto beintelligentbehaviour.

In responseto thiswork it washypothesisedthatsucha simplestrategy couldalsoprovide

amechanismfor obstacleavoidance.An obstacleplacedbetweenthesoundsourceandthe

observer would appear(asa resultof diffractionandHuygens’2 construction[50]) astwo

1taxis: reflex translationalororientationalmovementbyafreelymotileandusuallysimpleorganismin relation

to asourceof stimulation(asa light or a temperatureor chemicalgradient)

2ChristianHuygens,Dutchmathematician,physicist,andastronomer,1629-1695

Creatures

Applications 124

Source

Observer

Obstacle

Figure4.12: DiffractionRoundanObstacle

separatesoundsources,oneoneachsideof theobstacle(asshown in figure4.12).

Theobserver would pick oneof thesoundsourcesbasedon its strength,andhencemove

towardsthe closestedgeof the obstacle. Upon arriving at the edgeof the obstaclethe

original soundsourcewould becomevisible,andhencetheobserverwould move towards

the sourceby a very efficient routewithout eitherprior knowledge,training or complex

calculation.Withoutknowledgeof thecreaturesinternalstructureathird partycouldeasily

describethe behaviour as intelligent, settingsub-goalsin order to reacha moredifficult

objective.

Creatures

Applications 125

random%1000==0: DIE;

cansee(wall): {

random%20==0: DIE;

iam(np): SOUTH;

iam(ep): WEST;

iam(sp): NORTH;

iam(wp): EAST;

}

true: {

true: i=random%4;

i==0: {become(np);NORTH;}

i==1: {become(ep);EAST; }

i==2: {become(sp);SOUTH;}

i==3: {become(wp);WEST; }

}

Figure4.13: TheMovementof Scentparticles

Implementation

It appearedthatsucha systemcouldbe investigatedusinga Creaturesmodel. A simula-

tion of Phono-taxis would requirea very large numberof agentsbehaving in a strongly

coherentfashionto simulatethemovementof a wave front. While suchbehaviourshave

beenimplementedit wasdecidedthatOlifi-taxis (the following of smell) would bemore

appropriateto aCreaturesbasedmodel.Odorgradientschangemoreslowly over timeand

dependon statisticaldiffusionratherthanthestrict geometricbehaviour of soundwaves.

Thesimulationwasthereforebuilt in termsof a ratattemptingto find cheesein amaze.

Thefirst taskwasto implementthebehaviour of odorparticles.In orderthatanobserver

mayknow whichdirectionaparticleis moving in four typesof scentparticlewereused:np,

ep,spandwp eachindicatingadifferentdirection.Thishoweveris ashorttermphenomena

asit only indicatesthebehaviour on thepreviousmove. Statisticalpropertiesarereliedon

to ensurethatthedensityof particlesis greatestnearestthesource,andthatmoreparticles

will move away from thesourcethantowardsit. Codeis includedto ensurethatparticles

do not passthroughwalls. A scentparticle’s behaviour is otherwiserandom,asshown in

figure4.13. Particlesdecaywith a smallprobability, andareremovedwith a muchhigher

Creatures

Applications 126

random%1000==0: DIE;

cansee(wall): {

iam(cheese): {

cansee(rat): DIE;

!: {

birth(np);

birth(sp);

birth(ep);

birth(wp);

CENTER;

}

}

Figure4.14: TheCheeseCreature

probabilitywhenthey encountera wall. This is to reducereflectionswhich couldconfuse

thecreatureattemptingto locatethetarget. Howeverasmalllevel of reflectionis usefulas

it aidsthesmellin propagatingroundthemaze.

A “cheese”creaturewasimplementedasshown in figure4.14.A cheesecreaturecreatesa

numberof odorcreaturesateachtimestep,andstaysin its currentlocationunlessit seesa

ratcreature.Shouldthecheeseobservearat it diesandis consideredto havebeeneatenby

therat.

Fourdifferentstrategiesweredevelopedfor themovementof therat:

rat: movestowardsthe strongestsmell. If thereis no strongestsmell it remains

stationary.

frat(franticrat): movestowardsthestrongestsmell. If thereis no strongestsmell it

movesrandomly.

prat(persistentrat): movestowardsthestrongestsmell. If thereis nostrongestsmell

it repeatsits previousmove.

rrat(randomrat): movesrandomly. rratspurposeis to provideacontrol.

Thecodefor eachof thesestrategiesis shown in figures4.15and4.16. FratandPratare

complicatedslightly by their needto avoid walking throughwalls! Thestandardrat will

Creatures

Applications 127

iam(rat): {

true:i=4;

(cansee(np)>cansee(sp)):i=2;

(cansee(np)<cansee(sp)):i=0;

(cansee(ep)>cansee(wp)):i=3;

(cansee(ep)<cansee(wp)):i=1;

random%2==0:

{

(cansee(np)>cansee(sp)):i=2;

(cansee(np)<cansee(sp)):i=0;

}

}

iam(rrat): {

cansee(wall): i=(i+2)%4;

!:{random%4==0:i=random%4;}

}

iam(rat)|iam(rrat):

{

i==0: NORTH;

i==1: EAST;

i==2: SOUTH;

i==3: WEST;

i==4: CENTER;

}

Figure4.15: RatandRandomRat

Creatures

Applications 128

iam(prat): {

cansee(wall): i=(i+2)%4;

!: {

(cansee(np)>cansee(sp)):i=2;

(cansee(np)<cansee(sp)):i=0;

(cansee(ep)>cansee(wp)):i=3;

(cansee(ep)<cansee(wp)):i=1;

random%2==0: {

(cansee(np)>cansee(sp)):i=2;

(cansee(np)<cansee(sp)):i=0;

}

}

}

iam(frat): {

cansee(wall): i=(i+2)%4;

!: {

random%4==0:i=random%4;

(cansee(np)>cansee(sp)):i=2;

(cansee(np)<cansee(sp)):i=0;

(cansee(ep)>cansee(wp)):i=3;

(cansee(ep)<cansee(wp)):i=1;

random%2==0: {

(cansee(np)>cansee(sp)):i=2;

(cansee(np)<cansee(sp)):i=0;

}

}

}

iam(prat)|iam(frat):{

i==0: NORTH;

i==1: EAST;

i==2: SOUTH;

i==3: WEST;

}

Figure4.16: PersistentRatandFranticRat

Creatures

Applications 129

Rat

Cheese

Figure4.17: TheMaze

nevermoveontoawall, asodorwill neverbegreatestfrom thatdirection(dueto asubtlety

in thescentcode).FratandPratmaymoveontoa wall duringoneof theuncertainmoves,

andthereforerequireasmallamountof codeto extraditethemselvesfrom thispredicament.

Results

In aninitial testwherea singlewall wasplacedbetweenarat andthecheese,performance

wasgenerallypoor— theratfoundthecheesebuttypically tookmany hundredsof timesteps

to completea taskwhichcouldbeaccomplishedin approximatelytwenty. Examinationof

thedistribution of scentparticlesindicatedthatalthougha largenumberof particleswere

beingcreatedtheir densitywasvery low at evenshortdistances.Sucha densityfailed to

providea sufficient statisticalbasisfrom which therat couldfind thecheese.A mazewas

thereforedevelopedas in figure 4.17. This provided sufficient containmentof the scent

particlesthatareasonabledensitycouldbeachieved— mostlocationscontainedscentmost

of thetime.

Following initial trials that demonstratedthat the rat was capableof finding the cheese

Creatures

Applications 130

StandardRat RandomRat FranticRat PersistentRat

165,129,180,140, 249,800,532,635, 29,96,99,164, 62,30,86,42,

140,147,44,36, 540,62,602,42, 174,66,96,72, 50,110,121,86,

69,202,74,88, 225,907,335,56, 58,164,92,106, 38,128,134,74,

153,55,107,144, 490,280,133,519, 64,194,70,56, 62,152,132,164,

155,124,159,63, 94,366,802,858, 136,40,136,134, 82,94,50,44,

371,225,63,131, 979,458,632,592, 54,52,257,46, 102,152,138,136,

83,124,88,82, 592,283,743,318, 118,128,164,130, 112,50,128,106,

48,177,274,54, 282,668,138,424, 156,92,142,122, 76,88,100,240,

102,180,223,63, 80,692,124,840, 72,88,76,88, 42,18,48,62,

145,150,142,334, 476,2019,280,328, 98,160,226,50, 98,200,170,48,

155,138,268,56, 458,632,784,592, 72,88,76,110, 40,122,106,72,

135,141,177,86, 293,342,255,920, 98,160,226,50, 42,154,96,120,

169,203 374,86 50,124 140,159

Table4.1: RatPerformance:Timestepstakento reachthecheese

in an acceptabletimescale(the sameorderof magnitudeasan optimal solution) the rat

was removed from the maze,and the systemwas run for several thousandtime steps.

This ensuredthat the scentdistribution was in a (dynamically)stablestateprior to the

commencementof any experiments.This positionwassaved,andusedasthebasisfor all

furtherexperiments.

A rat to be testedwasplacedat thestartinglocationandallowed to run themazeuntil it

foundoneof thepiecesof cheese.Thenumberof timestepstakenwasrecorded.Thiswas

repeatedfifty timesfor eachkind of rat. Theresultsareshown in table4.1,andgraphically

in figure4.18. Themeantimesfor Rat,RRat,FRatandPratrespectivelyare:139,484,109

and98steps(thecompletestatisticalresultsareshownin table4.2). Thestandarddeviations

for the respective distributionsare: 72, 341,52 and48. Despitethe largeoverlapsin the

distributionsthereis sufficientevidenceto statisticallydifferentiatethesebehaviours.

If arat is moreeffectiveatsolvingthemazethantheothersit shouldbestatisticallypossible

to show that its resultsare a samplefrom a different distribution. This may be tested

by calculatingthe standarderror of the difference(the squareroot of the varianceof the

Creatures

Applications 131

0 100 200 300 400
0

5

10

Steps to Cheese

F
re

qu
en

cy

Rat

Random

Frantic
Persist

Figure4.18: RatPerformance

Deviation
Prat
FRat
RRat

3.4 7.9 1.1
2.4 7.7
7.0

>2 is signifigant

Rat RRat FRat Prat

Rat RRat FRat Prat
484.0 108.8 98.1Mean 139.2
341.1 52.1 47.9Std Dev 71.6

SEoD
Prat
FRat
RRat

12.2 48.7 10.0
12.5 48.8
49.2

Rat RRat FRat Prat

Table4.2: StatisticalResults

Creatures

Applications 132

difference)betweenpairsof distributions[47]. This is definedas:

StdErrorof Diff
2
1

1

2
2

2
(4.1)

where is the standarddevitation, and the sizeof eachpopulation. If the difference

betweenthe meansof two populationsis greaterthan twice the standarderror of the

difference,thenthe result is statistically“significant” — ie. they areprobablydifferent.

Two standarddeviationsrepresentsapproximately95%certaintythat the populationsare

different— a greaterdifferencewould indicategreatercertainty. However no amountof

datawouldeverbetotally conclusive.

By inspectionRat,FRatandPRatperformbetterthanRRat(aswouldbeexpected).When

thedatais statisticallyanalysedit is foundthateachsetproduceshighly significantresults.

There is virtually no doubt that thesestrategies provide someadvantageover random

foraging. Rat producesan SEoDof 49.2 comparedto RRatandhencea difference7.0

standarddeviationsbetweenthe two means.FRatproducesan SEoDof 48.8with RRat

andhence7.7standarddeviationsdifference.PratgivesandSEoDof 48.7whencompared

to RRat— 7.8Standarddeviations.

Thecomparisonof Ratwith FRatismoreinterestingthanthecomparisonstoRRat.Though

FRatseemsto performbetterthereis avery largeoverlapbetweenthetwo distributions—

it is notclearby inspectionthatFRatis genuinelybetter. TheStandardErrorof Difference

betweenthe two distributionsis 12.5. The differencebetweenthe meansis in fact 2.43

timesthis value,andhencethe result is significant. FRatprobably(with approximately

99%certainty)doesperformbetterthanRat. More samplescouldbeusedre-inforcethis

result.

Pratperforms3.4 standarddeviationsbetterthanRat. However afterfifty trials thecom-

parisonof PratandFratgivesa SEoDof 10.0,andhencea differenceof only 1.1standard

deviations. While Pratappearsto performbetter(andin factprobablydoesperformbet-

ter thanFrat), theevidenceis statisticallyinconclusive. 1.1 standarddeviationsindicates

approximately75% certaintyin the result — this is generallynot consideredsufficient

evidenceto establisha result.

AlthoughFratandPratwill find thecheesefasterthanRat they will generallymake more

movementstogetthere(FRatandPRatwill neverbestationarywhileRatmaybestationary

if thereis nothingto do). Whetherthis is ausefulstrategy in a realsituationwoulddepend

on the relative costsof movementagainststandingstill, andwhetherothercreaturesare

competingfor thegoal.

Creatures

Applications 133

Prat’s potentialimprovementover Frat is dueto it trustingtheprevioussample,whenthe

currentsampleis inconclusive. Unfortunatelyif thecurrentsampleis inconclusivethenthe

previoussamplemayhavebeenunreliable,sotheimprovementis notasgreatasonemight

hope(thoughin theabsenceof goodinformationit maybethebestthingthatcanbedone).

An improvedstrategy would take into accountanestimateof thereliability of theprevious

result,andfollow its directionsfor a limited time baseduponits strength.At thesimplest

level thepreviousresultcouldbeusedfor asingletimestep,thenrandomactivity adopted.

Thiswouldpreventtherat travelinga largedistanceasa resultof asinglebadsample.

Conclusions

Whensimulatingtaxisusinghighlevel programmingtechniquesit is oftendifficult to make

a systemwhich doesnot work. In a perfectenvironmenta singlesample(theoretically)

tells the observer both the distanceandbearingof the target. Noisemustthenbe added

by the programmerto make the problemharder! The creaturessimulationpreventsthis

by enforcingstrict locality, and restricting the transferof information. No individual

scentparticle“knows” the locationof thetarget(andmayvery likely beproviding wrong

information),but collectively they indicateits location. This styleof simulationproduces

resultswhicharemorereliablethanahigh level implementationwith artificial noiseadded

dueto its basicstructuralvalidity.

Simple taxis basedstrategies are capableof producingbehaviour which to an external

observer would appearintelligent. The ratsdo appearto setsub-goalswhich aresolved

in turn to achieve a final complex objective. The“intelligence” displayedis equalto that

shown by many farmorecomplex mazesolvingalgorithms[15][51].

Theinterestingresultof thisexperimentis not thattaxisworks— asasimplehill-climbing

algorithmit is too basicto fail to work, given a suitableproblem. The significantresult

is that formulatinga mazesolving taskin this fashionproducesanenvironmentwhich is

perfectlysuitedto a taxisbasedapproach.Thediffusionof particlesfrom thegoalensures

thattheproblemis freefrom localminima,andtheratmaysimply“follo w its nose”to find

anoptimumroutethroughthespace.This considerationof creatureandenvironmentasa

singlesystemis frequentlyadvocatedby thoseattemptingto simulateliving systems[58].

Creatures

Applications 134

4.3 Conclusionson the Application of Creatures

TheCA styleexamplesshow in a veryabstractedfashionsomeof thetechniquesthatmay

beusedwhenprogrammingCreatures.In eachof thecasestheCreaturesimplementation

is simpler, moreintuitive, or moreefficient thanthe traditionalCA solution. Thesecode

fragmentsshow how problemsmaybetackledin a physicalfashionwhich maybeeasier

for a non-specialistthantraditionalSIMD programmingstyles.

Thesecondsetof examplesbuild onthetechniquesdevelopedin solvingthesimpleproblems

of theCA examples.While thesolutionspresentedherearenot intendedto becomplete

simulations,they do show how theproblemscouldbe tackledusingtheCreaturesmodel,

andrelatively shortpiecesof JAM code.In eachcasethecodewaseasilydevelopedandis

relatively readablecomparedto equivalentCA code.

Of particularvalueis theseparationof eachcomponentof theproblem. It is quitesimple

to changethe behaviour of onepart of the simulationwhile the restof the coderemains

unchanged.Thisis particularlyevidentin thefinalexamplewherethebehaviourof theRats

wasindependentof the behaviour of the restof the system,andhencecould be changed

to testdifferentstrategies. In additionseveralRatscouldbeplacedin a mazecontaining

many piecesof cheese,shouldsuchanexperimentbeconsidereduseful.Suchoptionsmay

notbeavailablewith eitherconventionalhigh level, or CA approaches.

Creatures

Discussion 135

5

Discussion

5.1 Review

The Creaturesmodelof parallelprocessingaddressessomeof the problemsinherentin

conventionalparallelarchitectures:

Complexity

Scaleability

Performance

Accessibility

Applicability

The architecturedraws on the existing SIMD paradigmof cellular automatonandother

simulationtechniques,adaptingthemodelsto producea simulationenvironmentsuitedto

themodellingof dynamicsystems.

Theshiftof emphasisfromthespatialnatureof CA toactiveelementsimprovesaccessibility

— the systemis much easierto usefor inexperiencedusers,who would be unableto

operateconventionalSIMD/CA systems.For anexperienceduser, thesystemallowsmany

structuresto be easilyexpressedthat would be difficult in a traditionalparadigm— an

increasein applicability.

By representingactive agentsthe modelallows strongstructuralisomorphismsto be de-

velopedbetweenelementsin a simulation,andelementsin the realworld. In additionto

makingprogrammingeasier, this allows greaterconfidenceon a simulation. As it is not

necessaryto make global assumptionsaboutbehaviour, the modelis morereliablewhen

takenbeyondthelimits of initial, known testdata.

Creatures

Discussion 136

Performanceof the systemsdevelopedis too complex to be easilysumarised.Creatures

simulationsarelessefficientthanstaticsystemswhenimplementeduponcurrenthardware.

Thefixeddatapathsof CA styleprogrammingarebettersuitedto SIMD hardware. This

is only to be expected,assuchhardwareis likely to have beendesignedfrom CA style

concepts. However much of this performancedeficit may be regainedby well written

simulators,and simulationswhich exploit the dynamic natureof creaturesto evaluate

sparsedata. If we considerthe “Gameof Life” example,thenCreatureswill give better

performancefor largegridswhich have little activity on them. CA forcework to bedone

for all space.It mayalsobe necessaryto increasethe complexity of a CA simulationto

incorporateconcepts,for whichCreaturesarebettersuited.In suchcasestheperformance

of CA suffers,andhenceCreaturesmaybemoreefficient.

CA scalewell in many respects.Informationis only usedonalocalbasis,andhencealarge

systemdoesnot requireinformationto bespreadfurther thanin a smallsystem.Locality

is alsostrongin Creatures.Howeverthedynamicnatureof acreaturesneighborhoodoften

makesthis difficult to exploit without throwing away muchthat is useful— particularly

in termsof loadbalancing.Bucketingandspiralingoffer a compromisebetweenthestrict

locality thatCA require,andthedynamiclocalitiesfoundin Creatures.By carefuluseof

theseandothersimilar techniques,scalableCreaturesimplementationshavebeenbuilt.

Creaturesprovidesageneralpurposeenvironmentsuitedto thesimulationof many systems.

Thoughsuchsystemscouldeasilybeprogrammedin otherlanguages,by usingCreatures,

the initial programmingeffort maybeavoided. More importantly, by working within the

strict formality of Creatures,theprogrammeris preventedfrom implementinganumberof

“bad” simulationconcepts(andmayalsobenefitfrom asoundtheoreticalbasis).Creatures

forcestheuserto implementthemovementof datain averyexplicit fashion.Strict locality,

andlimited interactionsprevent the userfrom building, for example“a food sensor1”[8].

Without suchrestrictionsit is all to easyto build a systemthat appearsto demonstrate

emergentglobalbehaviourfromlocallydefinedaction,whenin factglobaldatais frequently

beingbroadcastto all agents.

This strengthis alsothe major weaknessof creatures.Building large modelsfrom such

simplecomponentsmayprovetoolaboriousto bepractical.It maybenecessaryto develop

methodsof expressingmany basiccreaturesoperationsasasinglestatement.Suchameta-

creaturesmodelwouldallow systemsto bebuilt morequickly from largerbuilding blocks,

while retainingtheunderlyingcreaturesstructureandintegrity.

1It is oftenbuilt into simulationsof animalbehaviour, thatacreaturewill movetowardsthenearestfood. This

mayseemreasonable,but noconsiderationis givento how thisshouldbeperformed

Creatures

Discussion 137

Creaturesmostimportantfeatureis its simplicity. By restrictingthemodelto averylimited

setof operations,Creaturesmaybe implemented,reasonedabout,andprogrammedboth

efficiently andeffectively.

5.2 Further Work

5.2.1 Simulator Development

The currentimplementationsof Creaturesprovide a solid platform on which rulesmay

be developed(NeXT implementation),and a rangeof systemswhich demonstratethe

implementationof Creatureson parallelhardware.Theparallelsystemsdevelopedto date

havenotproducedreliable,usefulplatformsonwhichauserwouldchoosetodevelopcode.

Thoughthe CM andMP implementationsdid offer someperformanceimprovementfor

certaintypesof populationthis speedupwasneithergreatenoughor frequentenoughto

justify thehigh costof themachines.However theexperiencegainedin developingthese

implementationsled to thecreationof a transputerbasedsystemwhich thoughlimited to

very smallpopulations,performsexcellently. Evidencesuggeststhatwith morememory,

andperhapsmoreprocessorsapractical,veryhighspeedparallelimplementationcouldbe

developedwith transputerhardware.

Sucha simulatorwould allow a massively parallel systemto be built and run at very

high speed.However furtherdevelopmentwould still be requiredto make sucha system

accessibletoendusers.It wouldbedesirabletoaccessaparallelbackendthroughsomething

resemblingtheexistingNeXT front end. It is likely thatsuchanimplementationwouldbe

limited by thedatabandwidthto thefront end,astheentiresystemmustsendinformation

aboutits stateto the front end (and perhapsrespondto additionalinterrogation). This

couldbeimprovedthroughtheuseof a transputerwith a greaternumberof links (suchas

theTexasC40[62]) to form a treestructureperpendicularto the maincomputingsurface

(figure5.1). Sucha topologywould providevastly improvedperformancefor theloading

andsaving of data— a potentialbottleneckin thecurrentsystemwherecreaturesmustbe

threadedthroughthemaingrid to reachtheir targetnodes.Thevirtual routingavailableon

InmosT9000systemswould alsobeof assistancein implementingsucha system,though

only with respectto softwaredevelopment— realtimeperformancewouldstill belimited.

Creatures

Discussion 138

Figure5.1: Improving I/O Performance

5.2.2 Extending the Model

The currentcreaturesmodelhasthe importantpropertiesof beingsimple,yet complete.

Therearehowevera numberof areaswhichcouldbeinvestigatedfurther.

Currentimplementationsof theCreaturesmodel,andtheJAM languagerestrictthenumber

of creaturetypesto an enumerableset. While this is a very practicalapproach,it is not

unreasonableto imaginesystemswhich would requirean infinite set of creaturetypes,

or at leasta very large rangeof types(considerextensionsto the sexually transmitted

diseasemodelto makeotherphysicalattributesvisible). It maynotalwaysbereasonableto

explicitly definebehaviour for eachtype. Insteadit shouldbepossibleto considertypeasa

vectorquantity, allowing generalbooleanoperationsto beperformeduponit. Observations

in JAM areparticularlyweakin this area— therangingoperatorbeingtoo limited, asthe

complexity of typesincreases.

It hasoftenbeenconsideredthatthenearconstraintberelaxed,andthatcontinuousspace

introducedinto the model. This is attractive in concept,but raisesmany new problems.

Is the viewing radiusfixed for all creatures?If not then is it a function of observer or

observed(or both)?Dataintegrity becomesaseriousproblem,astheusefulpropertiesthat

andperhapseventhat arelost. It isunlikelythatapractical

systemwill be developedthat incorporatescontinuousspaceinto the creaturesmodel

Creatures

Discussion 139

withoutmajorchangesto theunderlyingideas.In additionto theconceptualproblems,the

implementationof sucha systemis unlikely to bepractical.

A more practicalpropositionis the conceptof continuoustime. Justas DEVS brings

continuoustime to CA type models,so time could be incorporatedinto the Creatures

model,bringingCreaturessomewhatcloserto theMirror system.Self timedsystemsare

moreappropriatewhenmodelinglocalisedevents,astheclockitself is aglobalmechanism

capableof producingstructuredbehaviour which has no inherentmeaningwithin the

simulation.By giving eachCreaturea wake-uptime,andadditionallywakingit whenever

its world view changesa modelingsystemcloselyrelatedto Creaturesbut with discrete

eventstylepropertiescouldbedeveloped.

An alternative approachto time within the modelwould be to simply remove the global

synchronisation,andallow eachcreature(or location)to updateeitherat randomtimes,or

with a periodslightly differentto all othercreatures(or locations).It hasbeenshown[40]

thatcertainpropertiesof CA aredependantuponthesynchronousnatureof themodel,and

in factthatcertaininterestingbehavioursmaybemaskedby this. Similar resultsarelikely

to applyto Creatures.Thoughintroducingcontinuoustimeinto theCreaturesmodelwould

radicallychangethetechniquesusedto build simulations(andsimulators),theconceptis

not totally alien.

5.2.3 Simulation Techniques

Much progresshasalreadybeenmadein learningto programthe architecture. There

is however muchresearchstill to be done,in investigatinghow structuresmay be built.

In particular the problemsof transferringinformation acrossspacemust be addressed.

Techniquesmustbedevelopedfor building compositeobjectsmadeup of many creatures,

andsharinginformationbetweenthemovera rangeof space.

Thebeginningsof thismaybeseenin mostof thesimulationspresentedhere.Theseideas

mustbedrawn togetherto produceaneffectiveapproachto modelbuilding. Howeverthese

ideaswill only surfaceastheresultof building realsimulationsof realsystems.

5.2.4 Applications

If the Creaturesarchitectureis to develop it mustfind practicalapplicationbeyond pure

parallelprocessingresearch.In chapter4somesimplesystemsweredemonstrated,showing

Creatures

Discussion 140

how Creaturescould be applied in a numberof fields. Models suchas thesemust be

developedinto completesimulations,andbeshown to bevalid whencomparedto thereal

world. This activity would provide valuablefeedbackinto thedevelopmentof simulators

andtheprogrammingmodel.

Creatures

Conclusions 141

6

Conclusions

6.1 GeneralAims

This research’s aim wasto developanenvironmentwheresimulationscouldbedescribed

in termsof agentswhich move throughthe systeminteractingon a local basis,and to

demonstratethe viability of suchan aproach. To achieve this the Creaturesmodelwas

derived,andpracticalimplementationsof the modelproduced.By developinga specific

model a lower boundhasbeenplacedon the abilities of agentbasedmodeling— an

“improved” agentbasedsystemwould be ableto do anything Creaturescan,but maybe

ableto do more. Creatureshasdemonstratedthata generalmodelof computationmaybe

producedwhich encompassesmany of thehardcodedagentbasedsimulationswhich have

beenproduced.By exploringthespecificCreaturesmodelit hasbeenshownthatin general,

agentbasedmodelsexist whichmaybebothpracticallyimplementedandusefullyapplied.

It hasbeendemonstratedthatfor certainclassesof problemagentbasedsystemsaresimpler

to usethantraditionalSIMD architectures,yet retaintheattractive featuresof CA. Clearly

agentbasedsystemshave a role to play, alongsidetraditional dataparallel programing

techniques.In additionthespecificmodeldeveloped,andits simulatorsprovideaplatform

onwhichpracticalwork maybedone.

6.2 Creatures

The “Creatures”modelof SIMD parallelcomputationwhich hasbeenproposedandde-

velopedin this thesis,retainstheattractive featuresof traditionaldataparalleltechniques

while allowing dynamicsystemsto bedescribedin a simpleintuitive form. Systemsare

specifiedin termsof theactive componentsof which they aremadeup. Thesesmallscale

elements(or creatures)arethenallowed to interacton a strictly local basis. Thoughthe

Creatures

Conclusions 142

smallscaleactivity of singlecreaturesmaybesimple,thelargenumberof interactionswill

typically produceinterestingresultswhenthebehaviour of thewholesystemis considered.

By enforcingthe strongstructuralparallelsbetweenthe simulationcodeandthe system

beingmodeled,simulationsmaybebuilt moreeasilyandwith greaterpredictivepower.

The modelhasbeenimplementedon a numberof platformsincluding traditionalserial

machines,tightly coupledSIMD machinesandlooselycoupledMIMD hardware. It has

beendemonstratedthat themodelis scalableprovidedthe implementationis constructed

carefully. Use of a hashingfunction to partition a computationhasbeenshown to be

effective. In applyingthis hashingtechniqueto the Creaturesmodela generalisationof

Sequin’s doubly twistedtoruswasdevelopedwhich provideseffective loadbalancingfor

a broadrangeof problemswithout a priori knowledgeof the task. This hasapplication

beyondtheCreaturessystem,asasimpleyet powerful network topology.

The model forces the user to describethe parallelismof the problemrather than find

parallelismin thesolution.Thisnotonly makesthedescriptionof theproblemsimpler(as

therealworld systembeingdescribedgenerallyhasinherentparallelism),but it allows the

descriptionto betranslatedinto codefor arangeof parallelor serialmachinesin anefficient

manner. Thesimulationis describedin termsof anabstractCreaturesmachineratherthan

beingtiedto aspecificstyleof hardware.As suchmodelsmaybedevelopedonalow cost,

interactive platform,with only a few creaturesactive in the environment. Thecodemay

thenbecopiedto a largersystemandusedto analysea morerealisticallysizedproblem.

In order to testanddevelop the modela numberof simulationsweredeveloped. These

demonstratethe programmingtechniqueswhich have proved effective when using the

Creaturesmodel. It has beenshown that simulationsdevelopedin Creaturesmay be

effective in understandingreal systemsin other fields. The simulationsso developed

typically requiredvery small quantitiesof codeto producea meaningfulsimulation,and

developmenttime wastypically in theorderof hoursfor relatively complex simulations.

Thesimulationscouldnot have beendevelopedwith suchclarity or speedin a traditional

high level language.Further, by developingsimulationsfrom a known theoreticalbasethe

simulationsarelikely to bemorereliable— thestrictenvironmentpreventstheinadvertent

sharingof data that could make a systemappearto behave correctly when in fact the

underlyingmechanismsareincorrect.

TheCreaturesmodel,anditssupportingsoftwarehavebeendevelopedasfarasispractically

possiblein a computingresearchenvironment. TheCreaturesmodelmustnow be tested

againsttheproblemsof researchersin otherfieldswhowishto build simulationsto analyse

Creatures

Conclusions 143

their systems,ratherthanto testthesimulationtechniquesashasbeendonesofar. Once

this hasbeendonethetruestrengthsandweaknessesof themodelwill berevealed,rather

thanthestateof themodelasperceivedby its developers.

Creatures

REFERENCES 144

References

[1] S. Abraham,K. Padmanabhan.(1991)TheTwistedCubeTopology for Multiproces-

sors: A Studyin NetworkAsymmetry. Journalof ParallelandDistributedComputing

Vol 13,pp104–110.

[2] Anderson,May. (1992)UnderstandingtheAidsPandemic.ScientificAmericanMay

1992.

[3] Arvind, Smart,Peden.(1993)ConcurrentDiscreteEventSimulation.EdinburghPar-

allel ComputingCentre,ProjectDirectory1993.

[4] W.D.Ashton.(1966)TheTheoryof RoadTraffic Flow. MethuenandCoLtd.

[5] A. Assad.N. Packard.(1991)Emergent Colonizationin an Artificial Ecology. Pro-

ceedingsof the1stEuropeanConferenceonArtificial Life. MIT Press.

[6] J.Barnes,P.Hut. (1986)A Hierarchical O(NlogN) Force-CalculationAlgorithm.Na-

ture,324,p446(December).

[7] J.Bradley. (1981)File & DataBaseTechniques.Holt, RinehartandWinston.

[8] R. A. Brooks.(1991)Artificial Life andRealRobots.Proceedingsof the1stEuropean

ConferenceonArtificial Life. MIT Press.

[9] A. Burns,A Wellings.(1989)Real-TimeSystemsandtheir ProgrammingLanguages.

Addison-Wesley.

[10] R.B.Cooper. (1981)Introductionto QueueingTheory. NorthHolland.

[11] B.J.Cox,A. J.Novobilski.(1986)Object-OrientatedProgramming,AnEvoloutionary

Approach.Addison-Wesley.

[12] L.Dagum.(1992)DataParallel Sortingfor ParticleSimulationConcurrency: Practice

andExperience,Vol. 4(3),241-255(May) JohnWiley & SonsLtd.

[13] J. L. Deneubourg, G. Theraluz,R. Beckers.(1991)SwarmmadeArchitectures.Pro-

ceedingsof the1stEuropeanConferenceonArtificial Life. MIT Press.

Creatures

REFERENCES 145

[14] A.K.Dewdney. (1990)TheCellular AutomataProgramsthat createwireworld, rug-

world andotherdiversions.ScientificAmerican,January1990.

[15] J.Y.Donnar, J.A.Meyer. (1994)A Hierarchical ClassifierSystemimplementinga Mo-

tivationally AutonomousAnimat.FromAnimalsto Animats,Simulationof Adaptive

Behavior ’94. MIT Press.

[16] M.Dorigo,V.Maniezzo,A.Colorni.(1994)TheAntSystem:Optimizationbya Colony

of Cooperating Agents.Politecnicodi Milano. Submittedto IEEE Transactionson

Systems,ManandCybernetics.

[17] J.D.Eckart(1994)A Cellular AutomataSimulationSystem.ComputerScienceDept,

RadfordUniversity.

[18] M.J.Flynn(1972)SomeComputerOrganisationsandtheir effectiveness.IEEETrans-

actionsonComputing,C-21948–60.

[19] C.C.Foster, T.I.Berall.(1985)ComputerArchitecture. VanNostrandReinhold.

[20] Nigel R. Franks.(1989)ArmyAnts: A CollectiveIntelligence. In AmericanScientist,

April 1989,pages138-145.

[21] J.L. Frankel. (1991)C* LanguagereferenceManual.ThinkingMachinesCorp.

[22] M Gardner. (1970)MathematicalGames:TheFantasticCombinationsof JohnCon-

way’sNew SolitaireGame“Life”. ScientificAmerican,October1970.

[23] M Gardner. (1970)MathematicalGames:CellularAutomata,Self-Reproduction,The

Gardenof EdenandtheGameof “Life”. ScientificAmerican,February1971.

[24] S.L.Garfinkel, M.K.Mahoney. (1993)NeXTStepProgramming. TELOS.

[25] D.G.Green,T.J.Bossomaier. (1993)Complex Systems:FromBiologyto Computation.

IOSPress,Amsterdam.

[26] A.Goldberg, D. Robson.(1983)Smalltalk-80TheLanguageandits Implementation.

Addison-Wesley.

[27] D.Gross,C.M.Harris.(1974)Fundamentalsof QueueingTheory. J.Wiley & Sons.

[28] B. Hasslacher, U. Frisch,Y. Pomeau.(1986)Lattice gasautomatafor the Navier-

Stokesequation.PhysicsReview Letters,56.

[29] W.D. Hillis. (1987)TheConnectionMachine. In ScientificAmerican,June1987 ,

pages108-115.

Creatures

REFERENCES 146

[30] C. A. R. Hoare.(1985)CommunicatingSequentialProcesses.PrenticeHall ISCS.

[31] R.W.Hockney, C.R.Jessope.(1981)Parallel Computers: Architecture, Programming

andAlgorithms.Addison-Wesley.

[32] P. Hogeweg. (1984)Heterarchical Modeling. Encyclopediaof SystemsandControl.

Oxford: PergamonPress.

[33] P. Hogeweg, B.Hesper. (1984) SocioinformaticProcesses: MIRROR Modelling

Methodology. J.Theor. Biol 113.AccademicPressInc.

[34] P. Hogeweg. (1988)MIRRORbeyondMIRROR,Puddlesof LIFE. Artificial Life, SFI

Studiesin theSciencesof Complexity. Addison-Wesley.

[35] P. Hogeweg.(1989)SimplicityandComplexity in MIRRORuniverses.BioSystems23.

Elsevier ScientificPublishersIrelandLtd.

[36] P. Hogeweg.(1983)TheOntogenyof theInteractionStructurein BumblebeeColonies:

A Mirror Model In Behavioral Ecology and Sociobiology12:271–283.Springer-

Verlag.

[37] J.E.Hopcroft,J.D.Ullman.(1979) Introductionto AutomataTheory, Languagesand

Computation.Addison-Wesley.

[38] S.Horst.(1989)Scientificapplicationsof theconnectionmachine. Singapore.World

Scientific.

[39] F.Huber, J.Thorson.(1985)Cricket Auditory Communication.ScientificAmerican,

253:6:47–54.

[40] T.E.Ingerson,R.L.Buvel. (1984)Structurein AsynchronousCellularAutomata.Phys-

ica10D,NorthHollandPhysicsPublishing.

[41] Inmos.(1989)TheTransputerDataBook.

[42] Inmos.(1988)Occam2 referenceManual.PrenticeHall ISCS.

[43] N.S.Jayant,P.Noll. (1984)Digital Codingof Waveforms.PrentiseHall.

[44] G.C.Lie, E.Clementi.(1986)Molecular-DynamicsSimulationof Liquid Water with

anabinitio FlexibleWater-WaterInteractionPotential.PhysicalReview, A33,p2679,

1986.

[45] MasPar ComputerCorporation.(1991)DataParallel ProgrammingGuide.

Creatures

REFERENCES 147

[46] R.Milner. (1989)CommunicationandConcurrency. PrenticeHall ISCS.

[47] M.J.Moroney. (1951)FactsFromFigures.PenguinBooks.

[48] G.Neumann.(1968)OceanCurrents.Elsevier OceanographySeries.

[49] NeXT Computer, Inc. (1991)TheNeXTStepAdvantage.

[50] H.C.Ohanioan.(1985)Physics.N.W.NortonandCo.

[51] A.G.Pipe,T.C.Fogarty,A.Winfield.(1994)AhybridArchitecturefor LearnignContin-

uousEnvironmentalModelsin MazeProblems.FromAnimalstoAnimats,Simulation

of AdaptiveBehavior ’94. MIT Press.

[52] A.D.Polimeni,H.J.Straigh.(1985)FoundationsofDiscreteMathematics.Brooks/Cole

PublishingCompany.

[53] D.M.N.Prioret al. (1990)WhatPrice Regularity? Concurrency: PractiseandExpe-

rience,Vol.2(1),pp55–78,J.Wiley & Sons.

[54] M.Resnick.(1991)*LogoManual.MIT MediaLab.

[55] R.Rucker. (1991)vantsemailrudy@autodesk.uucp.

[56] C.H.Sequin.(1981)DoublyTwistedTorusNetworksfor VLSIProcessorArrays.8th

AnnualSymposiumon Computerarchitecture,pp471–480,IEEE ComputerSociety

Press.

[57] M.J.Smith.(1987)Traffic Control andTraffic Assignmentin a Signal-ControlledNet-

work with Queueing. 10th internationalSymposiumon transportationand Traffic

Theory.

[58] T.Smithers.(1994)OnWhyBetterRobotsMakeIt Harder. FromAnimalsto Animats,

Simulationof AdaptiveBehavior ’94. MIT Press.

[59] I.Stephenson,R.W.Taylor. (1994)CreaturesandSpirals: Adataparallel objectarchi-

tectureProceedingsof theEuromicroworkshoponParallelandDistributedProcessing

1994,IEEEPress.

[60] I.Stewart. (1994)MathematicalRecreations: TheultimateAnty-particle. Scientific

AmericanJuly 1994.

[61] A.Stroud.(1969)Mathematicsfor EngineersandScientists.VanNostrandReinghold.

[62] TexasInstruments.(1991)TexasC40TransputerDataSheet.

Creatures

REFERENCES 148

[63] Toffoli, Margolus.(1986)CAM a New Environmentfor Modeling. MIT Press,Cam-

bridge,Mass.

[64] A.M. Turing. (1937)On ComputableNumbers. Proceedingsof the LondonMathe-

maticalSociety,Series2 issue42pp230–265.

[65] G. Y. Vichniac.SimulatingPhysicswith Cellular Automata.(1984) Physica10D,

NorthHollandPhysicsPublishing.

[66] Von Neuman.collectedworksVol V:Designof Computers,Theoryof Automata,and

NumericalAnalysis.

[67] B. Web. (1994)RobotExperimentsin CricketPhonotaxis.FromAnimalsto Animats,

Simulationof AdaptiveBehavior ’94. MIT Press.

[68] K.Weihrauch.(1987)Computability. Springer-Verlag.

[69] S.Wolfram.(1986)Theoryandapplicationsof cellular automata.World Scientific.

[70] L. Wolpert. (1968)TheFrench Flag problem: A Contribution to the Discussionon

Pattern Developmentand Regulation. In Towardsa TheoreticalBiology. Edinburgh

UniversityPress.

[71] Yonezawa,Tokoro.(1987)ObjectOrientedConcurrentProgramming. MIT Press.

[72] B.P.Zeigler. (1976)Theoryof ModelingandSimulation.Wiley & Sons,New York.

[73] B.P.Zeigler. (1982) Discrete event modelsfor cell spacesimulation. International

Journalof TheoreticalPhysics.

Creatures

